Click functionalization of methacrylate-based hydrogels and their cellular response
Miriem Santander-Borrego
The University of Queensland, Australian Institute for the Bioengineering and Nanotechnology, St Lucia, Queensland, 4072 Australia
Search for more papers by this authorDavid W. Green
The Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101 Australia
Search for more papers by this authorTraian V. Chirila
The University of Queensland, Australian Institute for the Bioengineering and Nanotechnology, St Lucia, Queensland, 4072 Australia
The Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101 Australia
The University of Queensland, School of Medicine, Herston Road, Herston, Queensland, 4029 Australia
Queensland University of Technology, Faculty of Science and Engineering, 2 George Street, Brisbane, Queensland, 4001 Australia
University of Western Australia, Faculty of Science, Crawley, Western Australia, 6009 Australia
Search for more papers by this authorAndrew K. Whittaker
The University of Queensland, Australian Institute for the Bioengineering and Nanotechnology, St Lucia, Queensland, 4072 Australia
The Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101 Australia
The University of Queensland, Centre for Advancing Imaging, St Lucia, Queensland, 4072 Australia
Search for more papers by this authorCorresponding Author
Idriss Blakey
The University of Queensland, Australian Institute for the Bioengineering and Nanotechnology, St Lucia, Queensland, 4072 Australia
The University of Queensland, Centre for Advancing Imaging, St Lucia, Queensland, 4072 Australia
Correspondence to: I. Blakey (Email: [email protected])Search for more papers by this authorMiriem Santander-Borrego
The University of Queensland, Australian Institute for the Bioengineering and Nanotechnology, St Lucia, Queensland, 4072 Australia
Search for more papers by this authorDavid W. Green
The Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101 Australia
Search for more papers by this authorTraian V. Chirila
The University of Queensland, Australian Institute for the Bioengineering and Nanotechnology, St Lucia, Queensland, 4072 Australia
The Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101 Australia
The University of Queensland, School of Medicine, Herston Road, Herston, Queensland, 4029 Australia
Queensland University of Technology, Faculty of Science and Engineering, 2 George Street, Brisbane, Queensland, 4001 Australia
University of Western Australia, Faculty of Science, Crawley, Western Australia, 6009 Australia
Search for more papers by this authorAndrew K. Whittaker
The University of Queensland, Australian Institute for the Bioengineering and Nanotechnology, St Lucia, Queensland, 4072 Australia
The Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101 Australia
The University of Queensland, Centre for Advancing Imaging, St Lucia, Queensland, 4072 Australia
Search for more papers by this authorCorresponding Author
Idriss Blakey
The University of Queensland, Australian Institute for the Bioengineering and Nanotechnology, St Lucia, Queensland, 4072 Australia
The University of Queensland, Centre for Advancing Imaging, St Lucia, Queensland, 4072 Australia
Correspondence to: I. Blakey (Email: [email protected])Search for more papers by this authorABSTRACT
Methacrylate-based hydrogels, such as homo- and copolymers of 2-hydroxyethyl methacrylate (HEMA), have demonstrated significant potential for use in biomedical applications. However, many of these hydrogels tend to resist cell attachment and growth at their surfaces, which can be detrimental for certain applications. In this article, glycidyl methacrylate (GMA) was copolymerized with HEMA to generate gels functionalized with epoxide groups. The epoxides were then functionalized by two sequential click reactions, namely, nucleophilic ring opening of epoxides with sodium azide and then coupling of small molecules and peptides via Huisgen's copper catalyzed 1,3-dipolar cycloaddition of azides with alkynes. Using this strategy it was possible to control the degree of functionalization by controlling the feed ratio of monomers during polymerization. In vitro cell culture of human retinal pigment epithelial cell line (ARPE-19) with the hydrogels showed improved cell adhesion, growth and proliferation for hydrogels that were functionalized with a peptide containing the RGD sequence. In addition, the cell attachment progressively decreased with increasing densities of the RGD containing peptide. In summary, a facile methodology has been presented that gives rise to hydrogels with controlled degrees of functionality, such that the cell response is directly related to the levels and nature of that functionality. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1781–1789
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
pola27183-sup-0001-suppinfo01.docx37.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES AND NOTES
- 1 A. K. Ekenseair, K. W. M. Boere, S. N. Tzouanas, T. N. Vo, F. K. Kasper, A. G. Mikos, Biomacromolecules 2012, 13, 2821–2830.
- 2 E. Sykova, P. Jendelova, L. Urdzikova, P. Lesny, A. Hejcl, Cell. Mol. Neurobiol. 2006, 26, 1113–1129.
- 3 S. G. Lévesque, R. M. Lim, M. S. Shoichet, Biomaterials 2005, 26, 7436–7446.
- 4 R. Yoshida, K. Sakai, T. Okano, Y. Sakurai, Adv. Drug Deliv. Rev. 1993, 11, 85–108.
- 5 W. N. E. van Dijk-Wolthuis, J. A. M. Hoogeboom, M. J. van Steenbergen, S. K. Y. Tsang, W. E. Hennink, Macromolecules 1997, 30, 4639–4645.
- 6 X. Huang, T. L. Lowe, Biomacromolecules 2005, 6, 2131–2139.
- 7 V. Truong, I. Blakey, A. K. Whittaker, Biomacromolecules 2012, 13, 4012–4021.
- 8 T. V. Chirila, Biomaterials 2001, 22, 3311–3317.
- 9 G. D. Friends, J. F. Kunzler, R. M. Ozark, Macromol. Symp. 1995, 98, 619–631.
- 10 E. J. Castillo, J. L. Koenig, J. M. Anderson, Biomaterials 1986, 7, 89–96.
- 11 R. Lalani, L. Liu, Biomacromolecules 2012, 13, 1853–1863.
- 12 E. A. Rayment, T. R. Dargaville, G. K. Shooter, G. A. George, Z. Upton, Biomaterials 2008, 29, 1785–1795.
- 13 G. Cheng, H. Xue, G. Li, S. Jiang, Langmuir 2010, 26, 10425–10428.
- 14 J.-P. Montheard, M. Chatzopoulos, D. Chappard, J. Macromol. Sci. C 1992, 32, 1–34.
- 15 D. G. Pedley, P. J. Skelly, B. J. Tighe, Br. Polym. J. 1980, 12, 99–110.
- 16 M. S. Lord, M. H. Stenzel, A. Simmons, B. K. Milthorpe, Biomaterials 2006, 27, 567–575.
- 17 T. P. Davis, M. B. Huglin, Angew. Makromol. Chem. 1991, 189, 195–205.
- 18 T. V. Chirila, Y. C. Chen, B. J. Griffin, I. J. Constable, Polym. Int. 1993, 32, 221–232.
- 19 I. Keen, L. Lambert, T. V. Chirila, S. M. Paterson, A. K. Whittaker, J. Biomim. Biomater. Tissue Eng. 2010, 6, 67–85.
- 20 Y. S. Casadio, D. H. Brown, T. V. Chirila, H. B. Kraatz, M. V. Baker, Biomacromolecules 2010, 11, 2949–2959.
- 21 K. Smetana, Jr., Biomaterials 1993, 14, 1046–1050.
- 22 R. Srinivasan, W. J. Leigh, J. Am. Chem. Soc. 1982, 104, 6784–6785.
- 23 R. Srinivasan, B. Braren, Chem. Rev. 1989, 89, 1303–1316.
- 24 G. T. Dair, T. V. Chirila, J. Mater. Sci. Lett. 2003, 22, 303–305.
- 25 A. Costela, I. Garciamoreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore, C. E. Webb, J. Appl. Phys. 1995, 77, 2343–2350.
- 26 Zainuddin, T. V. Chirila, Z. Barnard, G. S. Watson, C. Toh, I. Blakey, A. K. Whittaker, D. J. T. Hill, Radiat. Phys. Chem. 2011, 80, 219–229.
- 27 C. M. Kolodziej, S. H. Kim, R. M. Broyer, S. S. Saxer, C. G. Decker, H. D. Maynard, J. Am. Chem. Soc. 2012, 134, 247–255.
- 28 A. Rastogi, M. Y. Paik, M. Tanaka, C. K. Ober, ACS Nano 2010, 4, 771–780.
- 29 R. Sipehia, A. Garfinkle, W. B. Jackson, T. M. S. Chang, Biomater. Artif. Cells Artif. Organs 1990, 18, 643–655.
- 30 K. Schroder, A. Meyer-Plath, D. Keller, A. Ohl, Plasmas Polym. 2002, 7, 103–125.
- 31 M. Sailer, K. Lai Wing Sun, O. Mermut, T. E. Kennedy, C. J. Barrett, Biomaterials 2012, 33, 5841–5847.
- 32 Y. Cao, B. Zhang, T. Croll, B. E. Rolfe, J. H. Campbell, G. R. Campbell, D. Martin, J. J. Cooper-White, J. Biomed. Mater. Res. A 2008, 87, 719–727.
- 33 Y. Wang, A. S. Angelatos, F. Caruso, Chem. Mater. 2008, 20, 848–858.
- 34 H. Li, C. Chen, S. Zhang, J. Jiang, H. Tao, J. Xu, J. Sun, W. Zhong, S. Chen, Acta Biomater. 2012, 8, 4007–4019.
- 35 H. Li, Y. Ge, P. Zhang, L. Wu, S. Chen, J. Biomater. Sci. Polym. Ed. 2012, 23, 425–438.
- 36 Y. Zhang, L. Li, J. Zhu, H. Kuang, S. Dong, H. Wang, X. Zhang, Y. Zhou, Biomaterials 2012, 33, 7468–7477.
- 37 L. Grondahl, F. Cardona, K. Chiem, E. Wentrup-Byrne, T. Bostrom, J. Mater. Sci. Mater. Med. 2003, 14, 503–510.
- 38 L. Grondahl, A. Chandler-Temple, M. Trau, Biomacromolecules 2005, 6, 2197–2203.
- 39 S. Suzuki, L. Grondahl, D. Leavesley, E. Wentrup-Byrne, Biomaterials 2005, 26, 5303–5312.
- 40 A. Akkaya, N. Pazarlioglu, Prep. Biochem. Biotechnol. 2013, 43, 48–59.
- 41 M. Wang, J. Yuan, X. Huang, X. Cai, L. Li, J. Shen, Colloids Surf. B 2013, 103, 52–58.
- 42 J. E. Gautrot, W. T. S. Huck, M. Welch, M. Ramstedt, ACS Appl. Mater. Interface 2010, 2, 193–202.
- 43 I. N. Savina, M. Dainiak, H. Jungvid, S. V. Mikhalovsky, I. Y. Galaev, J. Biomater. Sci. Polym. Ed. 2009, 20, 1781–1795.
- 44 A. Denizli, E. Piskin, V. Dixit, M. Arthur, G. Gitnick, Int. J. Artif. Organs 1995, 18, 90–95.
- 45 S. Bierbaum, R. Beutner, T. Hanke, D. Scharnweber, U. Hempel, H. Worch, J. Biomed. Mater. Res. A 2003, A67, 421–430.
- 46 T. A. Kapur, M. S. Shoichet, J. Biomater. Sci. Polym. Ed. 2003, 14, 383–394.
- 47 S. Tugulu, P. Silacci, N. Stergiopulos, H. A. Klok, Biomaterials 2007, 28, 2536–2546.
- 48 M. P. Lutolf, J. A. Hubbell, Nat. Biotechnol. 2005, 23, 47–55.
- 49 U. Hersel, C. Dahmen, H. Kessler, Biomaterials 2003, 24, 4385–4415.
- 50 E. Ruoslahti, Annu. Rev. Cell Dev. Biol. 1996, 12, 697–715.
- 51 J. J. Bi, J. C. Downs, J. T. Jacob, J. Biomater. Sci. Polym. Chem. Ed. 2004, 15, 905–916.
- 52 J. T. Jacob, J. R. Rochefort, J. J. Bi, B. M. Gebhardt, J. Biomed. Mater. Res. B 2005, B72, 198–205.
- 53
M. Bodanszky, In Principles of Peptide Synthesis; Springer Berlin: Heidelberg, 1984; Vol. 16, pp 158–201.
10.1007/978-3-642-96763-4_5 Google Scholar
- 54 S. P. Massia, J. A. Hubbell, Ann. NY. Acad. Sci. 1990, 589, 261–270.
- 55 K. Merrett, C. M. Griffith, Y. Deslandes, G. Pleizier, H. Sheardown, J. Biomater. Sci. Polym. Chem Ed. 2001, 12, 647–671.
- 56 S. P. Massia, J. A. Hubbell, J. Biomed. Mater. Res. 1991, 25, 223–242.
- 57
Y. W. Tong,
M. S. Shoichet, J. Biomed. Mater. Res. 1998, 42, 85–95.
10.1002/(SICI)1097-4636(199810)42:1<85::AID-JBM11>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 58
H. C. Kolb,
M. G. Finn,
K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004–2021.
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 59 V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2708–2711.
- 60 P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless, V. V. Fokin, Angew. Chem. Int. Ed. 2004, 43, 3928–3932.
- 61 C. J. Hawker, V. V. Fokin, M. G. Finn, K. B. Sharpless, Aust. J. Chem. 2007, 60, 381–383.
- 62 D. Lin-Vien, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Academic Press: Boston, 1991.
- 63 T. P. Davis, M. B. Huglin, Angew. Makromol. Chem. 1991, 189, 195–205.
- 64 N. V. Tsarevsky, S. A. Bencherif, K. Matyjaszewski, Macromolecules 2007, 40, 4439–4445.
- 65 M. Chini, P. Crotti, F. Macchia, Tetrahedron Lett. 1990, 31, 5641–5644.
- 66 D. M. Coe, P. L. Myers, D. M. Parry, S. M. Roberts, R. Storerb, J. Chem. Soc. Chem. Commun. 1990, 151–153.
- 67 K. C. Dunn, A. E. Aotaki-Keen, F. R. Putkey, L. M. Hjelmeland, Exp. Eye Res. 1996, 62, 155–169.
- 68 F. Curnis, R. Longhi, L. Crippa, A. Cattaneo, E. Dondossola, A. Bachi, A. Corti, J. Biol. Chem. 2006, 281, 36466–36476.
- 69 Y. Mei, K. L. Beers, H. C. M. Byrd, D. L. Vanderhart, N. R. Washburn, J. Am. Chem. Soc. 2004, 126, 3472–3476.
- 70 S. P. Massia, J. A. Hubbell, J. Cell. Biol. 1991, 114, 1089–1100.
- 71 B. K. Mann, J. L. West, J. Biomed. Mater. Res. 2002, 60, 86–93.
- 72 J. A. Neff, P. A. Tresco, K. D. Caldwell, Biomaterials 1999, 20, 2377–2393.
- 73 A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, D. Discher, Biophys. J. 2004, 86, 617–628.