A molecular orbital study of the interactions of acrylic polymers with aluminum: Implications for adhesion
Arup K. Chakraborty
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Search for more papers by this authorH. Ted Davis
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Search for more papers by this authorCorresponding Author
Matthew Tirrell
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455Search for more papers by this authorArup K. Chakraborty
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Search for more papers by this authorH. Ted Davis
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Search for more papers by this authorCorresponding Author
Matthew Tirrell
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455Search for more papers by this authorAbstract
We present results of molecular orbital thory calculations of the interactions of acrylic polymers with aluminum, with a view toward understanding the nature of chemical bonding at the corresponding polymer-metal interfaces. The reported results are for the interactions of polymer model compounds with metal atoms (as opposed to our ongoing studies with metal surfaces). As such, the results relate to experimental studies where small dosages of metal atoms are evaporated onto polymer surfaces in pristine high vacuum environments. Our studies have been conducted within the theoretical framework of Hartree-Fock molecular orbital theory. We find that aluminum atoms interact primarily with the carbonyl group of acrylic polymers. The reaction proceeds by the metal atoms interacting with both the carbon and the oxygen atoms of the carbonyl functionality. This weakens the CO bond. Finally, the carbonyl bond loses double bond character, and strong AL—O bonds are formed. Our results are compared to experimental data, and the implications of the detailed nature of bonding for adhesion applications are discussed.
References
- 1 J. Schultz, A. Carre, and C. Mazeau, Int. J. Adhesion Adhesives, 163 (1984).
- 2 J. M. Burkstrand, ACS Symp. Series, 162, 339 (1981).
- 3 P. O. Hahn, G. W. Rubloff, and P. S. Ho, J. Vac. Sci. Technol., A2, 756 (1984).
- 4 J. L. Jordan, P. N. Sanda, J. F. Morar, C. A. Kovac, F. J. Himpsel, and R. A. Pollack, J. Vac. Sci. Technol., A4, 1046 (1986).
- 5 N. J. Chou and C. H. Tang, J. Vac. Sci. Technol., A2, 751 (1984).
- 6 G. Hadziioannou, S. Patel, S. Granick, and M. Tirrell, J. Am. Chem. Soc., 108, 2869 (1986).
- 7 H. Leidheiser, Jr., and P. D. Deck, Science, 241, 1176 (1988).
- 8 D. L. Allara, Polym. Sci. Technol., 12B, 751 (1980).
- 9 R. R. Mallik, R. G. Pritchard, C. C. Horley, and J. Comyn, Polymer, 26, 551 (1985).
- 10 M. Grunze and R. N. Lamb, Chem. Phys. Lett., 133, 283 (1987).
- 11 W. R. Salaneck, S. Stafstrom, J. L. Bredas, S. Anderson, P. Bodo, S. P. Kowalczyk, and J. J. Ritsko, J. Vac. Sci. Technol., A6, 3134 (1988).
- 12 C. J. Ballhausen and H. B. Gray, Molecular Orbital Theory, Halstead Press, New York, 1977.
- 13 M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York, 1969.
- 14 P. Hohenberg and W. Kohn, Phys. Rev., 136, B864 (1964).
- 15
S. Lundqvist and
N. H. March, Eds.,
Theory of the Inhomogeneous Electron Gas,
Plenum, New York,
1983.
10.1007/978-1-4899-0415-7 Google Scholar
- 16 A. R. Rossi, P. N. Sanda, B. D. Silverman, and P. S. Ho, Organometallics, 6, 580 (1987).
- 17 B. D. Silverman, P. N. Sanda, J. G. Clabes, P. S. Ho, and A. R. Rossi, J. Polym. Sci. Polym. Chem. Ed., 26, 1199 (1988).
- 18 B. D. Silverman, J. W. Bartha, J. G. Clabes, P. S. Ho, and A. R. Rossi, J. Polym. Sci. Polym. Chem. Ed., 24, 3325 (1986).
- 19 L. P. Buchwalter, B. D. Silverman, L. Witt, and A. R. Rossi, J. Vac. Sci. Technol., A5, 226 (1987).
- 20(a) J. Scott Shaffer, A. K. Chakraborty, H. T. Davis, M. Tirrell, and J. L. Martins, “Interactions of Acrylic Polymers with Jellium Surfaces,” paper presented at the AIChE annual meeting, San Francisco, November 1989; (b) J. Scott Shaffer, A. K. Chakraborty, H. T. Davis, M. Tirrell, and J. L. Martins, “Interactions of Organic Oligomers with Aluminum Surfaces,” in preparation to be submitted to J. Chem. Phys.
- 21 K. Fukuii, in Molecular Orbitals in Physics, Chemistry and Biology, P. O. Lowdin and B. Pullman, Eds., Academic, New York, 1964.
- 22 I. Fleming, Frontier Orbitals in Organic Chemistry, Springer-Verlag, Berlin, 1977.
- 23 W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.
- 24 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977).
- 25 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4907 (1977).
- 26 J. P. Steward and M. J. S. Dewar, MOPAC 4.0, QCPE # 455, Bloomington, IN, 1987.
- 27 T. Clarke, A Handbook of Computational Chemistry, Wiley, New York, 1985.
- 28 The energy minimizations were carried out with a convergence criterion such that the gradient norm was of the order of unity for the “optimized” configurations.
- 29 J. S. Binkley, R. A. Whiteside, K. Raghavachari, R. Seeger, D. J. DeFrees, H. B. Schlegel, M. J. Frisch, J. A. Pople, and L. A. Kahn, Gaussian-82 Release A, Carnegi-Mellon University, Pittsburgh, 1982.
- 30 R. G. Pearson, Hard and Soft Acids and Bases, Dowden Hutchinson and Ross, Inc., Stroudsburg, 1973.
- 31 G. Klopman and R. F. Hudson, Theor. Chim. Acta, 8, 165 (1967).
- 32 G. Klopman, J. Am. Chem. Soc., 86, 4550 (1964).
- 33 B. F. Lewis, M. Moseman, and W. H. Weinberg, Surface Science, 41, 142 (1974).
- 34 W. Bowser and W. H. Weinberg, Surface Science, 64, 377 (1977).
- 35 N. M. D. Brown, R. B. Floyd, and D. G. Walmsley, J. Chem. Soc. Faraday Trans. 2, 75, 17 (1979).
- 36 D. Allara and R. G. Nuzzo, Langmuir, 1, 45 (1985).
- 37 R. F. Colletti, H. S. Gold, and C. Dybowski, Appl. Spectroscopy, 41, 1185 (1987).
- 38 B. Thakkar, K. Konstandinidis, A. K. Chakraborty, L. W. Potts, R. Tannenbaum, J. F. Evans, and M. Tirrell, in press, Langmuir.
- 39 D. T. Clark and B. J. Cromarty, and A. Dilks, J. Polym. Sci. Polym. Chem. Ed., 16, 3173 (1978).
- 40 A. Many, Y. Goldstein, and N. B. Grover, Semiconductor Surfaces, North Holland, Amsterdam, 1965.
- 41 B. Douglas, D. H. McDaniel, and J. J. Alexander, Concepts in Inorganic Chemistry, 2nd ed., Wiley, New York, 1983.
- 42 L. Jarvis, C. Huang, T. Ferrin, and R. Langridge, Molecular Interactive Display and Simulation, School of Pharmacy, UCSF, San Francisco, 1986.
- 43 O. Gropen and A. Haaland, Act Chem. Scand., A36, 435 (1982).
- 44Lj. Atanasoska, S. G. Anderson, H. M. Meyer, III, Z. Lin, and J. H. Weaver, J. Vac. Sci. Technol., A5, 3325 (1987).
- 45 J. W. Bartha, P. O. Hahn, F. LeGoues, and P. S. Ho, J. Vac. Sci. Technol., A3, 1390 (1985).
- 46 B. M. DeKoven and P. L. Hagans, Appl. Surf. Sci., 27, 199 (1986).
- 47 J. J. Pireaux, paper presented at the Symposium on Metallized Plastics: Fundamental and Applied Aspects, Electrochemical Society Meeting, Chicago, 1988.
- 48 N. J. DiNardo, J. E. Demuth, and T. C. Clarke, Chem. Phys. Lett., 121, 239 (1985).
- 49 N. J. DiNardo, paper presented at the Symposium on Metallized Plastics: Fundamental and Applied Aspects, Electrochemical Society Meeting, Chicago, 1988.