Influence of external electric field on structure, spectra and various properties of 3-Chlorothieno[2,3-b]pyridine-2-carbonitrile using density functional theory
Tao Yaping
College of Physics and Electronic Information, Key Laboratory of Electromagnetic Transformation and Detection of Henan province, Luoyang Normal University, Luoyang, China
Search for more papers by this authorSu Mingzhu
College of Physics and Electronic Information, Key Laboratory of Electromagnetic Transformation and Detection of Henan province, Luoyang Normal University, Luoyang, China
Search for more papers by this authorXu Renyong
College of Physics and Electronic Information, Key Laboratory of Electromagnetic Transformation and Detection of Henan province, Luoyang Normal University, Luoyang, China
Search for more papers by this authorAi Jinfan
College of Physics and Electronic Information, Key Laboratory of Electromagnetic Transformation and Detection of Henan province, Luoyang Normal University, Luoyang, China
Search for more papers by this authorCorresponding Author
Zhang Weiying
College of Physics and Electronic Information, Key Laboratory of Electromagnetic Transformation and Detection of Henan province, Luoyang Normal University, Luoyang, China
Correspondence
Weiying Zhang, College of Physics and Electronic Information, Key Laboratory of Electromagnetic Transformation and Detection of Henan province, Luoyang Normal University, Luoyang 471934, China.
Email: [email protected]
Search for more papers by this authorTao Yaping
College of Physics and Electronic Information, Key Laboratory of Electromagnetic Transformation and Detection of Henan province, Luoyang Normal University, Luoyang, China
Search for more papers by this authorSu Mingzhu
College of Physics and Electronic Information, Key Laboratory of Electromagnetic Transformation and Detection of Henan province, Luoyang Normal University, Luoyang, China
Search for more papers by this authorXu Renyong
College of Physics and Electronic Information, Key Laboratory of Electromagnetic Transformation and Detection of Henan province, Luoyang Normal University, Luoyang, China
Search for more papers by this authorAi Jinfan
College of Physics and Electronic Information, Key Laboratory of Electromagnetic Transformation and Detection of Henan province, Luoyang Normal University, Luoyang, China
Search for more papers by this authorCorresponding Author
Zhang Weiying
College of Physics and Electronic Information, Key Laboratory of Electromagnetic Transformation and Detection of Henan province, Luoyang Normal University, Luoyang, China
Correspondence
Weiying Zhang, College of Physics and Electronic Information, Key Laboratory of Electromagnetic Transformation and Detection of Henan province, Luoyang Normal University, Luoyang 471934, China.
Email: [email protected]
Search for more papers by this authorYaping Tao and Mingzhu Su contributed equally.
Abstract
Thiophene and pyridine compounds are widely used in medicine, pesticides, and material fields, and study of their physical and chemical changes under an external electric field (EEF) will improve a deep understanding of their properties. In this work, we selected 3-Chlorothieno[2,3-b]pyridine-2-carbonitrile (CPC) as the representative and explored the structure, total energy, dipole moment, Hirshfeld charge, molecular electrostatic potential, infrared, Raman, and UV-Vis spectra of CPC under EEF through density functional theory (DFT). The calculations indicated that the bond length, the bond angle, total energy, dipole moment, and energy gap of CPC are strongly affected by EEF. Infrared, Raman, and UV-Vis spectra showed stark vibration effects with increasing EFF. Our results provide a basis for further applications of CPC with and without EEF.
Open Research
DATA AVAILABILITY STATEMENT
Data is available on request from the authors.
REFERENCES
- 1R. Mishra, I. Tomar, S. Singhal, K. Jha, Der Pharm. Chem. 2011, 3(4), 38.
- 2K. Othmer, Kirk-Othmer encyclopedia of chemical technology, John Wiley & Sons 2005.
- 3T. C. Chung, J. H. Kaufman, A. J. Heeger, F. Wudl, Phys. Rev. B. 1984, 30(2), 702.
- 4F. C. Meotti, D. O. Silva, A. R. S. dos Santos, G. Zeni, J. B. T. Rocha, C. W. Nogueira, Environ. Toxicol. Pharmacol. 2003, 15(1), 37.
- 5M. J. Kang, E. Miyazaki, I. Osaka, K. Takimiya, A. Nakao, ACS Appl. Mater. Interfaces 2013, 5(7), 2331.
- 6S. N. Darandale, N. A. Mulla, D. N. Pansare, J. N. Sangshetti, D. B. Shinde, Eur. J. Med. Chem. 2013, 65, 527.
- 7R. W. Sabnis, ACS Med. Chem. Lett. 2020, 11(12), 2366.
- 8K. Madhusudana, B. Shireesha, V. G. M. Naidu, S. Ramakrishna, B. Narsaiah, A. R. Rao, P. V. Diwan, Eur. J. Pharmacol. 2012, 678(1-3), 48.
- 9Z. Xu, J. Gu, M. Gao, N. du, P. Liu, X. Xu, J. Wang, X. Cao, Thromb. Res. 2018, 170, 192.
- 10S. Marijan, A. Markotić, A. Mastelić, N. Režić-Mužinić, L. I. Pilkington, J. Reynisson, V. Č. Čulić, Sci. Rep. 2020, 10(1), 1.
- 11X. X. Zeng, R. L. Zheng, T. Zhou, H. Y. He, J. Y. Liu, Y. Zheng, A. P. Tong, M. L. Xiang, X. R. Song, S. Y. Yang, L. T. Yu, Y. Q. Wei, Y. L. Zhao, L. Yang, Bioorg. Med. Chem. Lett. 2010, 20(21), 6282.
- 12E. A. Bakhite, A. E. Abdel Rahman, O. S. Mohamed, E. A. Thabet, Bull. Korean Chem. Soc. 2002, 23(12), 1709.
- 13I. Hayakawa, R. Shioya, T. Agatsuma, H. Furukawa, Y. Sugano, Bioorg. Med. Chem. Lett. 2004, 14(13), 3411.
- 14H. Y. Chen, M. Nikolka, A. Wadsworth, W. Yue, A. Onwubiko, M. Xiao, A. J. P. White, D. Baran, H. Sirringhaus, I. McCulloch, Macromolecules 2018, 51(1), 71.
- 15K. R. Johnson, M. A. Gracia-Nava, A. de Bettencourt-Dias, JOL 2020, 224, 117309.
- 16M. L. Xu, M. T. Li, Z. R. Hong, W. L. Li, Z. W. An, Q. Zhou, Opt. Mater. 2006, 28(8-9), 1025.
- 17C. Y. Li, C. Su, H. H. Wang, P. Kumaresan, C. H. Hsu, I. T. Lee, W. C. Chang, Y. S. Tingare, T. Y. Li, C. F. Lin, W. R. Li, Dyes Pigm. 2014, 100, 57.
- 18Y. P. Tao, Q. Wang, K. X. Sun, Q. Zhang, W. Q. Liu, J. B. du, Z.J. Liu, Spectrochim. Acta, Part A 2020, 231, 118108.
- 19T. Lu, Q.X. Chen, ChemPhysChem 2021, 22(4), 386.
- 20M. J. T. Jordan, K. C. Thompson, Chem. Phys. Lett. 2003, 370(1-2), 14.
- 21C. M. González-Henríquez, L. H. Tagle, C. A. Terraza, Á. Leiva, A. Barriga González, U. G. Volkmann, A. L. Cabrera, E. Ramos-Moore, M. Pavez-Moreno, Polym. Int. 2012, 61(5), 810.
- 22X. Zhan, H. Shi, H. Liu, J. Y. Lee, J. Comput. Chem. 2017, 38(5), 304.
- 23T. Stuyver, D. Danovich, J. Joy, S. Shaik, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2020, 10(2), e1438.
- 24Y. Li, J. Zhao, X. Yin, H. Liu, G. Yin, Phys. Chem. Chem. Phys. 2007, 9(10), 1186.
- 25S. Sowlati-Hashjin, C. F. Matta, J. Chem. Phys. 2013, 139(14), 144101.
- 26P. Song, Y. Li, F. Ma, M. Sun, J. Mater. Chem. C 2015, 3(18), 4810.
- 27Y.P. Tao, M.Z. Su, Z. X. Duan, L. G. Han, K. X. Sun, J. Phys. Org. Chem. 2021, 34, e4269.
- 28H. B. Zhan, Z. Tang, Z. X. Li, X. Y. Chen, J. Tian, X. Fei, Y. Wang, Spectrochim. Acta Part a: Mol. Biomol. Spectrosc. 2021, 260, 119993.
- 29Y. Y. Tong, H. Zhang, L. L. Chang, X. P. Xuan, Spectrochim. Acta, Part a 2018, 193, 197.
- 30X. P. Xuan, Y.L. Wang, N. Wang, Spectrochim. Acta Part a 2011, 81(1), 236.
- 31Y. P. Tao, L. G. Han, Y. X. Han, Z. J. Liu, Spectrochim. Acta Part a 2015, 137, 892.
- 32Y. P. Tao, L. G. Han, Y.X. Han, Z.J. Liu, Spectrochim. Acta Part a 2015, 137, 1078.
- 33C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- 34A. D. Becke, J. Chem. Phys. 1996, 104(3), 1040.
- 35B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, T. L. Windus, J. Chem. Inf. Model. 2019, 59(11), 4814.
- 36M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. MontgomeryJr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16[CP], Revision C.01, Gaussian, Inc., Wallingford CT 2016.
- 37J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77(18), 3865.
- 38C. Adamo, V. Barone, J. Chem. Phys. 1999, 110(13), 6158.
- 39S. S. Leang, F. Zahariev, M. S. Gordon, J. Chem. Phys. 2012, 136(10), 104101.
- 40É. Brémond, M. Savarese, N. Q. Su, Á. J. Pérez-Jiménez, X. Xu, J. C. Sancho-García, C. Adamo, J. Chem. Theory Comput. 2016, 12(2), 459.
- 41T. Lu, F. W. Chen, J. Comput. Chem. 2012, 33(5), 580.
- 42W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14(1), 33.
- 43X. H. Huang, C. B. Tay, Z. Y. Zhan, C. Zhang, L. X. Zheng, T. Venkatesan, S. J. Chua, CrstEngComm 2011, 13(23), 7032.
- 44M. Xie, Y. Qi, Y. Hu, J. Phys. Chem. A 2011, 115(14), 3060.
- 45I. M. Alecu, J. Zheng, Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 2010, 6(9), 2872.
- 46I. Zheng, M. Alecu, B. J. Lynch, Y. Zhao, D. G. Truhla, Database of Frequency Scale Factors for Electronic Model Chemistries (Version 4), 2018. https://comp.chem.umn.edu/freqscale/