Photovoltaics literature survey (no. 78)
Santosh Shrestha
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Search for more papers by this authorSantosh Shrestha
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Search for more papers by this authorAbstract
In order to help keep readers up-to-date in the field each issue of Progress in Photovoltaics will contain a list of recently published journal articles most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Transactions on Electron Devices, Journal of Applied Physics, Applied Physics Letters, Progress in Photovoltaics and Solar Energy Materials and Solar Cells. To assist the reader, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Santosh Shrestha at mailto:[email protected].
References
- 1. FUNDAMENTALS, NEW APPROACHES, AND REVIEWS
- Chow TT. A review on photovoltaic/thermal hybrid solar technology. Applied Energy 2010; 87: 365–379.
-
Akimov YA,
Koh WS,
Sian SY, et al.
Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?
Applied Physics Letters
2010;
96(7):
073111.
10.1063/1.3315942 Google Scholar
- Chhabra B, Bowden S, Opila RL, et al. High effective minority carrier lifetime on silicon substrates using quinhydrone-methanol passivation. Applied Physics Letters 2010; 96(6): 063502.
- Luque A, Linares PG, Antolin E, et al. Multiple levels in intermediate band solar cells. Applied Physics Letters 2010; 96: 013501.
-
Myers B,
Bernardi M,
Grossman JC.
Three-dimensional photovoltaics.
Applied Physics Letters
2010;
96(7):
071902.
10.1063/1.3308490 Google Scholar
- Fu Y, Zhou YH, Su HB, et al. Impact Ionization and Auger Recombination Rates in Semiconductor Quantum Dots. Journal of Physical Chemistry C 2010; 114(9): 3743–3747.
- Cao LY, Fan PY, Vasudev AP, et al. Semiconductor Nanowire Optical Antenna Solar Absorbers. Nano Letters 2010; 10(2): 439–445.
-
Bae J,
Kim H,
Zhang XM, et al.
Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters.
Nanotechnology
2010;
21(9):
095502.
10.1088/0957-4484/21/9/095502 Google Scholar
- Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials 2010; 9(3): 205–213.
- Kelzenberg MD, Boettcher SW, Petykiewicz JA, et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials 2010; 9(3): 239–244.
- Linyou C, White JS, Joon-Shik P, et al. Engineering light absorption in semiconductor nanowire devices. Nature Materials 2009; 8: 643–647.
- Zhiyong F, Razavi H, Jae-won D, et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Materials 2009; 8: 648–653.
- Yang SY, Seidel J, Byrnes SJ, et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nature Nanotechnology 2010; 5(2): 143–147.
- Boden SA, Bagnall DM. Optimization of Moth-Eye Antireflection Schemes for Silicon Solar Cells. Progress in Photovoltaics: Research and Applications 2010; 18(3): 195–203.
- Zin NS, Blakers A, Weber K. RIE-Induced Carrier Lifetime Degradation. Progress in Photovoltaics: Research and Applications 2010; 18(3): 214–220.
- Rosa-Clot M, Rosa-Clot P, Tina GM, et al. Submerged photovoltaic solar panel: SP2. Renewable Energy 2010; 35(8): 1862–1865.
- Grena R. Energy from solar balloons. Solar Energy 2010; 84(4): 650–665.
- Philipps SP, Peharz G, Hoheisel R, et al. Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions. Solar Energy Materials and Solar Cells 2010; 94(5): 869–877.
- Santbergen R, Goud JM, Zeman M, et al. The AM1·5 absorption factor of thin-film solar cells. Solar Energy Materials and Solar Cells 2010; 94(5): 715–723.
- 2. GENERAL CHARACTERISATION TECHNIQUES AND MODELLING
- Brown G, Faifer V, Pudov A, et al. Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current. Applied Physics Letters 2010; 96: 022104.
- Hong L, Loke WK, Qing Z, et al. Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Applied Physics Letters 2010; 96: 043501.
- Lee B, Wang LW. Electronic structure of ZnTe:O and its usability for intermediate band solar cell. Applied Physics Letters 2010; 96(7): 071903.
- Huang SH. Analysis of Photocurrent Spectra of SiGe/Si Quantum-Well Solar Cell. IEEE Transactions on Nanotechnology 2010; 9(2): 142–148.
- Hoppe H, Bachmann J, Muhsin B, et al. Quality control of polymer solar modules by lock-in thermography. Journal of Applied Physics 2010; 107: 014505.
- Dusabe D, Munda J, Jimoh A. Modelling of cloudless solar radiation for PV module performance analysis. Journal of Electrical Engineering 2009; 60: 192–197.
-
Yu F,
Wang HN,
Zou SL.
Efficient and Tunable Light Trapping Thin Films.
Journal of Physical Chemistry C
2010;
114(5):
2066–2069.
10.1021/jp909974h Google Scholar
- Tardon S, Bruggemann R. Characterization of the interface properties in a-Si: H/c-Si heterostructures by photoluminescence. Journal of Physics D 2010; 43(11): 115102.
-
Firth SK,
Lomas KJ,
Rees SJ.
A simple model of PV system performance and its use in fault detection.
Solar Energy
2010;
84(4):
624–635.
10.1016/j.solener.2009.08.004 Google Scholar
- Zagrouba M, Sellami A, Bouaïcha M, et al. Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction. Solar Energy 2010; 84(5): 860–866.
- 3. CRYSTALLINE SILICON - BULK CELLS AND TECHNOLOGY
- Mueller T, Schwertheim S, Fahrner WR. Crystalline silicon surface passivation by high-frequency plasma-enhanced chemical-vapor-deposited nanocomposite silicon suboxides for solar cell applications. Journal of Applied Physics 2010; 107: 014504.
- Fang HC, Chang CC, Liu CP, et al. Effects of Back Surface Textures on Contact Formation and Solar Cell Performance. Journal of the Electrochemical Society 2010; 157(3): H246–H249.
- Dohyeon K, Gunasekaran M, Kyunghae K, et al. Laser edge isolation for high-efficiency crystalline silicon solar cells. Journal of the Korean Physical Society 2009; 55: 124–128.
-
Harder NP,
Hermann S,
Merkle A, et al.
Laser-processed high-efficiency silicon RISE-EWT solar cells and characterisation.
Physica Status Solidi C
2009;
6:
736–743.
10.1002/pssc.200880720 Google Scholar
- Bothe K, Krain R, Falster R, et al. Determination of the Bulk Lifetime of Bare Multicrystalline Silicon Wafers. Progress in Photovoltaics: Research and Applications 2010; 18(3): 204–208.
- Ben Rabha M, Bessaïs B. Enhancement of photovoltaic properties of multicrystalline silicon solar cells by combination of buried metallic contacts and thin porous silicon. Solar Energy 2010; 84(3): 486–491.
- Kwon T, Kim S, Kyung D, et al. The effect of firing temperature profiles for the high efficiency of crystalline Si solar cells. Solar Energy Materials and Solar Cells 2010; 94(5): 823–829.
- Moreno M, Daineka D, Roca i Cabarrocas P. Plasma texturing for silicon solar cells: From pyramids to inverted pyramids-like structures. Solar Energy Materials and Solar Cells 2010; 94(5): 733–737.
- 4. THIN FILM, AMORPHOUS AND MICRO/NANO-CRYSTALLINE SILICON, HETEROJUNCTION CELLS
- Hsi-Fu S, Shang-Jung H, Wen-Yin L. Improvement of the light-trapping effect using a subwavelength-structured optical disk. Applied Optics 2009; 48: F49–F54.
- Despeisse M, Bugnon G, Feltrin A, et al. Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate. Applied Physics Letters 2010; 96(7): 073507.
- Qi W, Page MR, Iwaniczko E, et al. Efficient heterojunction solar cells on p-type crystal silicon wafers. Applied Physics Letters 2010; 96: 013507.
- Hara A, Sato T. Gettering in Large-Grained Thin Polycrystalline Silicon Films on Glass Substrate. Japanese Journal of Applied Physics 2010; 49(1): 010203.
- Schulze TF, Korte L, Conrad E, et al. Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells. Journal of Applied Physics 2010; 107: 023711.
- Soderstrom T, Haug FJ, Terrazzoni-Daudrix V, et al. Flexible micromorph tandem a-Si/c-Si solar cells. Journal of Applied Physics 2010; 107: 014507.
- Fei W, Hong Yu Y, Junshuai L, et al. Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application. Optics Letters 2010; 35: 40–42.
- Xianbo L, Wenhui D, Xinmin C, et al. Impacts of nano-structures in p- and i-layer on the performances of amorphous silicon solar cells. Physica Status Solidi C 2009; 6: 696–699.
- Brendel R, Ernst M. Macroporous Si as an absorber for thin-film solar cells. Physica Status Solidi-Rapid Research Letters 2010; 4(1–2): 40–42.
- CˇAmpa A, Isabella O, Van Erven R, et al. Optimal Design of Periodic Surface Texture for Thin-Film a-Si:H Solar Cells. Progress in Photovoltaics: Research and Applications 2010; 18(3): 160–167.
- Gress PJ, Widenborg PI, Varlamov S, et al. Wire Bonding as a Cell Interconnection Technique for Polycrystalline Silicon Thin-Film Solar Cells on Glass. Progress in Photovoltaics: Research and Applications 2010; 18(3): 221–228.
- Tao K, Zhang D, Wang L, et al. Development of textured back reflector for n-i-p flexible silicon thin film solar cells. Solar Energy Materials and Solar Cells 2010; 94(5): 709–714.
- 5. ORGANIC AND HYBRID CELLS
- Jang J, Seok-In N, Seok-Soon K, et al. Three-dimensional bulk heterojunction morphology for achieving high internal quantum efficiency in polymer solar cells. Advanced Functional Materials 2009; 19: 2398–2406.
-
Guchhait A,
Rath AK,
Pal AJ.
Near-IR activity of hybrid solar cells: Enhancement of efficiency by dissociating excitons generated in PbS nanoparticles.
Applied Physics Letters
2010;
96(7):
073505.
10.1063/1.3292183 Google Scholar
-
Subbiah J,
Kim DY,
Hartel M, et al.
MoO3/poly(9,9-dioctylfluorene-co-N- 4-(3-methylpropyl) -diphenylamine) double-interlayer effect on polymer solar cells.
Applied Physics Letters
2010;
96(6):
063303.
10.1063/1.3310013 Google Scholar
-
Tromholt T,
Katz EA,
Hirsch B, et al.
Effects of concentrated sunlight on organic photovoltaics.
Applied Physics Letters
2010;
96(7):
073501.
10.1063/1.3298742 Google Scholar
-
Chauhan KV,
Sullivan P,
Yang JL, et al.
Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions.
Journal of Physical Chemistry C
2010;
114(7):
3304–3308.
10.1021/jp910601k Google Scholar
- Jun-Hyuk P, Kyung-Jun A, Kang-Il P, et al. An Al-doped ZnO electrode grown by highly efficient cylindrical rotating magnetron sputtering for low cost organic photovoltaics. Journal of Physics D 2010; 43: 115101.
- He YJ, Chen HY, Hou JH, et al. Indene-C-60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells. Journal of the American Chemical Society 2010; 132(4): 1377–1382.
-
Nalwa KS,
Chaudhary S.
Design of light-trapping microscale-textured surfaces for efficient organic solar cells.
Optics Express
2010;
18(5):
5168–5178.
10.1364/OE.18.005168 Google Scholar
- Limpinsel M, Wagenpfahl A, Mingebach M, et al. Photocurrent in bulk heterojunction solar cells. Physical Review B 2010; 81(8): 085203.
- Kahlen S, Wallner GM, Lang RW, et al. Aging behavior of polymeric solar absorber materials: Aging on the component level. Solar Energy 2010; 84(3): 459–465.
- 6. PHOTOELECTROCHEMICAL CELLS
- Yang NL, Zhai J, Wang D, et al. Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells. ACS Nano 2010; 4(2): 887–894.
- Heng LP, Wang XY, Yang NL, et al. p-n-Junction-Based Flexible Dye-Sensitized Solar Cells. Advanced Functional Materials 2010; 20(2): 266–271.
- Fukui A, Fuke N, Komiya R, et al. Dye-sensitized photovoltaic module with conversion efficiency of 8·4%. Applied Physics Express 2009; 2: 082202.
- Im H, Kim S, Park C, et al. High performance organic photosensitizers for dye-sensitized solar cells. Chemical Communications 2010; 46(8): 1335–1337.
- Zeng WD, Cao YM, Bai Y, et al. Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chemistry of Materials 2010; 22(5): 1915–1925.
- Xu H, Tao X, Wang DT, et al. Enhanced efficiency in dye-sensitized solar cells based on TiO2 nanocrystal/nanotube double-layered films. Electrochimica Acta 2010; 55(7): 2280–2285.
- Toivola M, Halme J, Miettunen K, et al. Nanostructured dye solar cells on flexible substrates-review. International Journal of Energy Research 2009; 33: 1145–1160.
-
Ribeiro HA,
Sommeling PM,
Kroon JM, et al.
Dye-sensitized solar cells: novel concepts, materials, and state-of-the-art performances.
International Journal of Green Energy
2009;
6:
245–256.
10.1080/15435070902880901 Google Scholar
- Chen W, Qiu YC, Zhong YC, et al. High-Efficiency Dye-Sensitized Solar Cells Based on the Composite Photoanocles of SnO2 Nanoparticles/ZnO Nanotetrapods. Journal of Physical Chemistry A 2010; 114(9): 3127–3138.
-
De Marco L,
Manca M,
Giannuzzi R, et al.
Novel Preparation Method of TiO2-Nanorod-Based Photoelectrodes for Dye-Sensitized Solar Cells with Improved Light-Harvesting Efficiency.
Journal of Physical Chemistry C
2010;
114(9):
4228–4236.
10.1021/jp910346d Google Scholar
-
Charoensirithavorn P,
Ogomi Y,
Sagawa T, et al.
Improvement of Dye-Sensitized Solar Cell Through TiCl4-Treated TiO2 Nanotube Arrays.
Journal of the Electrochemical Society
2010;
157(3):
B354–B356.
10.1149/1.3280229 Google Scholar
- Roy P, Kim D, Lee K, et al. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2010; 2(1): 45–59.
-
Yang SM,
Kou HZ,
Wang HJ, et al.
Efficient electrolyte of N,N-bis(salicylidene)ethylenediamine zinc(II) iodide in dye-sensitized solar cells.
New Journal of Chemistry
2010;
34(2):
313–317.
10.1039/B9NJ00405J Google Scholar
- Yamaguchi T, Tobe N, Matsumoto D, et al. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7·6%. Solar Energy Materials and Solar Cells 2010; 94(5): 812–816.
- 7. CIS, CIGS, CdTe AND II-VI CELLS
- Liu W, Mitzi DB, Yuan M, et al. 12% Efficiency CuIn(Se,S)(2) Photovoltaic Device Prepared Using a Hydrazine Solution Process. Chemistry of Materials 2010; 22(3): 1010–1014.
- Wang Z, Li B, Zheng X, et al. Deep level transient spectroscopy investigation of deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact. Chinese Physics B 2010; 19(2): 027303.
- Boer KW. CdS enhances Voc and fill factor in CdS/CdTe and CdS/CuInSe2 solar cells. Journal of Applied Physics 2010; 107: 023701.
- Eisenbarth T, Unold T, Caballero R, et al. Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se2 thin film solar cells. Journal of Applied Physics 2010; 107(3): 034509.
- Mahesha MG, Bangera KV, Shivakumar GK. Characterization of p-CdTe/n-CdS hetero-junctions. Materials Science in Semiconductor Processing 2009; 12(3): 89–93.
-
Gremenok V,
Zalesski V,
Khodin A, et al.
Analysis of CIGS-based thin film solar cells with graded band gap.
Physica Status Solidi C
2009;
6:
1237–1240.
10.1002/pssc.200881135 Google Scholar
-
Yamaguchi T,
Asai Y,
Yufune K, et al.
Fabrication of solar cell with CuInSe2/high Ga/III ratio Cu(In,Ga)Se2 absorber by sequential evaporation from ternary compounds.
Physica Status Solidi C
2009;
6:
1229–1232.
10.1002/pssc.200881157 Google Scholar
- Aé L, Kieven D, Chen J, et al. ZnO Nanorod Arrays as an Antireflective Coating for Cu(In,Ga)Se2 Thin Film Solar Cells. Progress in Photovoltaics: Research and Applications 2010; 18(3): 209–213.
-
Krustok J,
Josepson R,
Danilson M, et al.
Temperature dependence of Cu2ZnSn(SexS1-x)4 monograin solar cells.
Solar Energy
2010;
84(3):
379–383.
10.1016/j.solener.2009.09.011 Google Scholar
- Kadam AA, Dhere NG. Highly efficient CuIn1-xGaxSe2-ySy/CdS thin-film solar cells by using diethylselenide as selenium precursor. Solar Energy Materials and Solar Cells 2010; 94(5): 738–743.
- 8. III-V, QUANTUM WELL, SPACE, CONCENTRATOR AND THERMOPHOTOVOLTAIC CELLS
- Junshuai L, Hong Yu Y, She M, et al. Design guidelines of periodic Si nanowire arrays for solar cell application. Applied Physics Letters 2009; 95: 243113.
-
Lai KY,
Lin GJ,
Lai YL, et al.
Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells.
Applied Physics Letters
2010;
96(8):
081103.
10.1063/1.3327331 Google Scholar
- Liu L, Chen N, Wang Y, et al. Temperature dependent spectral response characteristic of lll-V compound tandem cell. Chinese Science Bulletin 2009; 54: 353–357.
- Sheng-wei Z, Xiao-mei C, Bao-ping Z. Demonstration and study of photovoltaic performances of InGaN p-i-n homojunction solar cells. IEEE Journal of Quantum Electronics 2010; 46: 783–787.
- Bor Wen L. InxGa1-xN-GaN-based solar cells with a multiple-quantum-well structure on SiCN-Si(111) substrates. IEEE Photonics Technology Letters 2010; 22: 215–217.
- Kim CZ, Kim H, Song KM, et al. Enhanced efficiency in GaInP/GaAs tandem solar cells using carbon doped GaAs in tunnel junction. Microelectronic Engineering 2010; 87(4): 677–681.
- Unger BL. Concentrated photovoltaics. Optics and Photonics News 2009; 20: 26–32.
- Wang JY, Tsai FJ, Huang JJ, et al. Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer. Optics Express 2010; 18(3): 2682–2694.
- Aziz WJ, Ebrahim K. The influence of thickness variation on the efficiency of (InN/Si) and (GaN/Si) solar cells. Optoelectronics and Advanced Materials-Rapid Communications 2010; 4(1): 1–3.
- Baudrit M, Algora C. Theoretical optimization of GaInP/GaAs dual-junction solar cell: Toward a 36% efficiency at 1000 suns. Physica Status Solidi a 2010; 207(2): 474–478.
- Bauhuis GJ, Mulder P, Haverkamp EJ, et al. Wafer Reuse for Repeated Growth of III–V Solar Cells. Progress in Photovoltaics: Research and Applications 2010; 18(3): 155–159.
- Andreev VM, Davidyuk NY, Ionova EA, et al. Parameter optimization of solar modules based on lens concentrators of radiation and cascade photovoltaic converters. Technical Physics 2010; 55(2): 277–284.
- 9. TERRESTRIAL MODULES, BOS COMPONENTS, BUILDING INTEGRATED, SYSTEMS AND APPLICATIONS
- Sallem S, Chaabene M, Kamoun MBA. Energy management algorithm for an optimum control of a photovoltaic water pumping system. Applied Energy 2009; 86: 2671–2680.
- Kaldellis JK, Zafirakis D, Kondili E. Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis. Energy 2009; 34: 1187–1198.
- Bigot D, Miranville F, Fakra AH, et al. A nodal thermal model for photovoltaic systems: impact on building temperature fields and elements of validation for tropical and humid climatic conditions. Energy and Buildings 2009; 41: 1117–1126.
- Chel A, Tiwari GN, Chandra A. Simplified method of sizing and life cycle cost assessment of building integrated photovoltaic system. Energy and Buildings 2009; 41: 1172–1180.
- Friling N, Jimenez MJ, Bloem H, et al. Modelling the heat dynamics of building integrated and ventilated photovoltaic modules. Energy and Buildings 2009; 41: 1051–1057.
- Sefa I, Demirtas M, Colak I. Application of one-axis sun tracking system. Energy Conversion and Management 2009; 50: 2709–2718.
- Kuei-Hsiang C, Ching-Ju L. An intelligent maximum power point tracking method based on extension theory for PV systems. Expert Systems with Applications 2010; 37: 1050–1055.
- Cuddalorepatta G, Dasgupta A, Sealing S, et al. Durability of Pb-free Solder Between Copper Interconnect and Silicon in Photovoltaic Cells. Progress in Photovoltaics: Research and Applications 2010; 18(3): 168–182.
- Huld T, Cebecauer T, & Scaron;úri M, et al. Analysis of One-Axis Tracking Strategies for PV Systems in Europe. Progress in Photovoltaics: Research and Applications 2010; 18(3): 183–194.
- Díez-Mediavilla M, Alonso-Tristán C, Rodríguez-Amigo MC, et al. Implementation of PV plants in Spain: A case study. Renewable and Sustainable Energy Reviews 2010; 14(4): 1342–1346.
- Choi W-Y, Lai J-S. High-efficiency grid-connected photovoltaic module integrated converter system with high-speed communication interfaces for small-scale distribution power generation. Solar Energy 2010; 84(4): 636–649.
- Davidsson H, Perers B, Karlsson B. Performance of a multifunctional PV/T hybrid solar window. Solar Energy 2010; 84(3): 365–372.
- Moharil RM, Kulkarni PS. Reliability analysis of solar photovoltaic system using hourly mean solar radiation data. Solar Energy 2010; 84(4): 691–702.
- 10. POLICY, ECONOMICS, EDUCATION, HEALTH, ENVIRONMENT AND THE SOLAR RESOURCE
- Ekren O, Ekren BY. Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Applied Energy 2010; 87: 592–598.
- Hondo H, Baba K. Socio-psychological impacts of the introduction of energy technologies: change in environmental behavior of households with photovoltaic systems. Applied Energy 2010; 87: 229–235.
-
Qoaider L,
Steinbrecht D.
Photovoltaic systems: a cost competitive option to supply energy to off-grid agricultural communities in arid regions.
Applied Energy
2010;
87:
427–435.
10.1016/j.apenergy.2009.06.012 Google Scholar
-
Tiwari A,
Barnwal P,
Sandhu GS, et al.
Energy metrics analysis of hybrid - photovoltaic (PV) modules.
Applied Energy
2009;
86:
2615–2625.
10.1016/j.apenergy.2009.04.020 Google Scholar
- Abdullah MO, Yung VC, Anyi M, et al. Review and comparison study of hybrid diesel/solar/hydro/fuel cell energy schemes for a rural ICT Telecenter. Energy 2010; 35(2): 639–646.
- Lund PD. Exploring past energy changes and their implications for the pace of penetration of new energy technologies. Energy 2010; 35(2): 647–656.
- Zhu L, Hurt R, Correa D, et al. Comprehensive energy and economic analyses on a zero energy house versus a conventional house. Energy 2009; 34: 1043–1053.
- Stodola N, Modi V. Penetration of solar power without storage. Energy Policy 2009; 37: 4730–4736.
- Liou HM. Overview of the photovoltaic technology status and perspective in Taiwan. Renewable and Sustainable Energy Reviews 2010; 14(4): 1202–1215.
- Klugmann-Radziemska E, Ostrowski P. Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renewable Energy 2010; 35(8): 1751–1759.
- Leijon M, Skoglund A, Waters R, et al. On the physics of power, energy and economics of renewable electric energy sources - Part I. Renewable Energy 2010; 35(8): 1729–1734.
- Skoglund A, Leijon M, Rehn A, et al. On the physics of power, energy and economics of renewable electric energy sources - Part II. Renewable Energy 2010; 35(8): 1735–1740.
- Kohmoto K, Yoshida J, Kishioka M. Research on cost-benefit analysis of additionality of public R&D investment: Japan's photovoltaic power R&D projects. Research Evaluation 2009; 18(5): 397–404.