Extraction of nanofibers from polymer blends: A brief review
Navid Rabiei
Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
Search for more papers by this authorCorresponding Author
Mohammad Haghighat Kish
Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
Correspondence
Mohammad Haghighat Kish, Department of Textile Engineering, Amirkabir University of Technology, PO Box: 15875-4413, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorNavid Rabiei
Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
Search for more papers by this authorCorresponding Author
Mohammad Haghighat Kish
Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
Correspondence
Mohammad Haghighat Kish, Department of Textile Engineering, Amirkabir University of Technology, PO Box: 15875-4413, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorAbstract
This review is about the naturally formed and intentionally produced nanofibrils or nanofibers (NFs) that have been extracted and utilized or expected to be used for special applications. The diameter of NFs ranges between a few to a few hundred nanometers. Methods to arrange synthetic NFs assembly in yarns or pads forms have been examined. High throughput productions, versatility of various thermoplastics, and less environmental pollution are the advantages of the methods of extraction, which seems to make it as an economical process. It can also be used for the polymers that are difficult to be converted to NFs by electrospinning. The process is challenging and scientifically fascinating to attract the investigators. There are many more polymers to be considered, and there are many more envisioned applications that have to be practiced in the future. A theoretical base is needed for the evaluation of the effects of polymer flow parameters on the extracted NFs properties.
REFERENCES
- 1Nguyen LTH, Chen S, Elumalai NK, et al. Biological, chemical, and electronic applications of nanofibers. Macromol Mater Eng. 2012. https://doi.org/10.1002/mame.201200143
- 2Andrady L. Science and Technology of Polymer Nanofibers. Hoboken, New Jersey, USA: John Wiley; 2008.
10.1002/9780470229842 Google Scholar
- 3 Kenry, Lim CT. Beyond the current state of the syntheses and applications of nanofiber technology. Prog Polym Sci https://doi.org/10.1016/j.progpolymsci.2017.03.002. 70: 1-17.
- 4Kim S, Kim IS. Recent nanofiber technologies. Polym Rev. 2011; 51(3): 235-238.
- 5Raghvendra KM, Sravanthi L. Fabrication techniques of micro/nano fibres based nonwoven composites: a review. Mod Chem Appl. 05(02). https://doi.org/10.4172/2329-6798.1000206
- 6Persano L, Camposeo A, Pisignano D. Advancing the science and technology of electrospinning and functional nanofibers. Macromol Mater Eng. 2017; 302(8). https://doi.org/10.1002/mame.201700237
- 7Lee H, Kim IS. Nanofibers: emerging progress on fabrication using mechanical force and recent applications. Polymer Reviews. 2018; 1-29. https://doi.org/10.1080/15583724.2018.1495650
- 8Zeleny J. Instability of electrified liquid surfaces. Phys Ther Rev. 1917; 10(1): 1-6.
- 9Baumgarten PK. Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci. 1970; 36: 71.
- 10Lukas D, Sarkar A, Martinova L, et al. Physical principles of electrospinning (electrospinning as a nano-scale technology of the twenty-first century). Text Prog. 2009; 4159.
- 11Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010; 28(3): 325-347.
- 12Agarwal S, Greiner A, Wendorff JH. Electrospinning of manmade and biopolymer nanofibers—progress in techniques, materials, and applications. Adv Funct Mater. 2009; 19(18): 2863-2879.
- 13Schiffman JD, Schauer C. A review: electrospinning of biopolymer nanofiber and their applications. Polym Rev. 2008; 48(2): 317-352.
- 14Choi SJ, Persano L, Camposeo A, et al. Electrospun nanostructures for high performance chemiresistive and optical sensors. Macromol Mater Eng. 2017. https://doi.org/10.1002/mame.201600569
- 15Akampumuza O, Gao H, Zhang H, Wu D, Qin X-H. Raising nanofiber output: the progress, mechanisms, challenges, and reasons for the pursuit. Macromol Mater Eng. 2018; 303(1):1700269. https://doi.org/10.1002/mame.201700269
- 16Stojanovska E, Canbay E, Pampal ES, et al. A review on non-electro nanofibre spinning techniques. RSC Adv. 2016; 6(87): 83783-83801.
- 17Hsieh C, Lou C-W, Pan Y-J, et al. Fabrication of poly (vinyl alcohol) nanofibers by wire electrode-incorporated electrospinning. Fibers Polym. 2016; 17(8): 1217-1226.
- 18Sasithorn N, Mongkholrattanasit R, Martinova L. Preparation of silk fibroin nanofibres by needleless electrospinning using formic acid-calcium chloride as the solvent. Appl Mech Mater. 2016; 848: 203-206.
10.4028/www.scientific.net/AMM.848.203 Google Scholar
- 19Zhou F, Gong R-H, Porat I. Polymeric nanofibers via flat spinneret electrospinning. Polym Eng Sci. 2009; 49(12): 2475-2481.
- 20Niu H, Wang X, Lin T. Needleless electrospinning: developments and performances. In: T Lin, ed. Nanofibers-Production. Croatia: Properties and Functional Applications, InTech; 2011.
10.5772/24999 Google Scholar
- 21Zhang X, Lu Y. Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost. Polym Rev. 2014; 54(4): 677-701.
- 22Bellan LM, Craighead HG. Applications of controlled electrospinning systems. Polym Adv Technol. 2011; 22(3): 304-309.
- 23Agarwal S, Greiner A. On the way to clean and safe electrospinning—green electrospinning: emulsion and suspension electrospinning. Polym Adv Technol. 2011; 22(3): 372-378.
- 24Mehlethaler K. Electron micrograph of plant fibers. Biochim Biophys Acta. 1949; 3: 15-25.
- 25Hearle JWS. In: JWS Hearle, RH Peters, eds. The Development of Ideas of Fine Structure. England: Fiber Structure, Textile Inst; 1968: 209.
- 26Sikorski J. The fine structure of animal and manmade fibers. In: JWS Hearle, RH Peters, eds. Fiber Structure. England: Textile Institute; 1968: 269.
- 27Wyssling F. The submicroscopic structure of cell wall. Sci Prog. 1933; 34: 249.
- 28Wyssling F. The fine structure of cellulose microfibrils. Science. 1954; 119(3081): 80-82.
- 29Hock W, McMurdie HF. Structure of the wool fibers revealed by the electron microscope. J Res Bureau Standards. 1943; 31: 239.
- 30Hearle JWS. The structural mechanics of fibers. J Polym Sci: Part C. 1967; 20: 215.
10.1002/polc.5070200118 Google Scholar
- 31Hearle JWS, Sparrow JT. Mechanics of the extension of cotton fibers. II. Theoretical modeling. J Appl Polym Sci. 1979; 24: 1857.
- 32Hearle JWS. A critical review of the structural mechanics of wool and hair fibres. Int J Biol Macromol. 2000; 27(2): 123-138.
- 33Hearle JWS. Protein fibers: structural mechanics and future opportunities. J Mater Sci. 2007; 42(19): 8010-8019.
- 34McDaniel PB, Deitzel JM, Gillespie JW Jr. Structural hierarchy and surface morphology of highly drawn ultra high molecular weight polyethylene fibers studied by atomic force microscopy and wide angle X-ray diffraction. Polymer. 2015; 69: 148-158.
- 35Liu S, Zhang F, Zheng G, et al. Direct microscopic observation of shish-kebab structure in high-temperature electrospun iPP fibers. Mater Lett. 2016; 172: 149-152.
- 36Osong SH, Norgren S. Engstrand P. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose, 2015, DOI https://doi.org/10.1007/s10570-015-0798-5.
- 37Nechyporchuk O, Belgacem MN, Bras J. Production of cellulose nanofibrils: A review of recent advances, industrial crops and products xxx 2016 xxx–xxx, https://doi.org/10.1016/j.indcrop.2016.02.016.
- 38Jonoobi M, Oladi R, Davoudpour Y, et al. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellul. 2015; 22(2): 935-969.
- 39Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellul. 2010; 17(3): 459-494.
- 40Chandra J, George N, Narayanankutty SK. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Polymers. 2016. https://doi.org/10.1016/jcarbpol.2016.01.015
- 41Fortunati E, Luzi F, Jiménez Marco A, et al. Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydr Polym. 2016; 149: 357-368. https://doi.org/10.1016/j.carbpol.2016.04.120
- 42McCulloch JG. The history of the development of melt blowing technology. Internat Nonwoven J. 2002; 8: 1.
- 43Daristotle JL, Behrens AM, Sandler AD, Kofinas P. A review of the fundamental principles and applications of solution blow spinning. ACS Appl Mater Interfaces. 2016; 8(51): 34951-34963.
- 44Mahalingam S, Edirisinghe M. Forming of polymer nanofibers by a pressurised gyration process. Macromol Rapid Commun. 2013; 34(14): 1134-1139.
- 45Medeiros S, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LHC. Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J Appl Polym Sci. 2009; 113(4): 2322-2330.
- 46Zuo F, Tan DH, Wang Z, Jeung S, Macosko CW, Bates FS. Nanofibers from melt blown fiber-in-fiber polymer blends. ACS Macro Lett. 2013; 2(4): 301-305.
- 47Lim H. A review of spunbond process. J Textile Apparel Technol Manag. 2010; 6: 1-10.
- 48Fedorova N, Pourdeyhimi B. High strength nylon micro- and nanofiber based nonwovens via spunbonding. J Appl Polym Sci. 2007; 104(5): 3434-3442.
- 49Nakata K, Fujii K, Ohkoshi Y, et al. Poly (ethylene terephthalate) nanofibers made by sea-island-type conjugated melt spinning and laser-heated flow drawing. Macromol Rapid Commun. 2007; 28(6): 792-795.
- 50Zhang X, Jin G, Ma W, et al. Fabrication and properties of poly(L-lactide) nanofibers via blend sea-island melt spinning. J Appl Polym Sci. 2015; 32: 41228.
- 51Utracki LA, Mukhopadhyay P, Gupta RK. Polymer blend. In: LA Utracki, LA Wilkie, eds. Polymer Blends Handbook. Second ed. New York: Springer Reference; 2014: 3.
- 52Tsebrenko MV, Jakob M, Kuchinka MY, Yudin AV, Vinogradovt GV. Fibrillation of crystallizable polymers in flow exemplified by melts of mixtures of polyoxymthylene and copolyamides. Int J Polym Mater Polym Biomater. 1974; 3(2): 99-116.
- 53Tsebrenko MV, Youdin AV, Ablazova TI. Mechanism of fibrillation in the flow of polymer mixtures. Polymer. 1976; 217: 831.
- 54Liang R, White JL, Spruill JE, Goswam BC. Polypropylene/nylon 6 blends: phase distribution morphology, rheological measurements, and structure development in melt spinning. J Appl Polym Sci. 1983; 28(6): 2011-2032.
- 55Tsebrenko MV. Fibrillation of the mixtures of crystallizable, amorphous and poorly crystalline polymers. Internat J Polym Mater. 1983; 10(2): 83-119.
- 56Min K, White JL, Fellers JF. High density polyethylene/polystyrene blends: phase distribution morphology, rheological measurements, extrusion, and melt spinning behavior. J Appl Polym Sci. 1984; 29(6): 2117-2142.
- 57Utracki LA, Dumoulin MM, Toma P. Melt rheology of high density polyethylene/polyamide-6 blends. Polym Eng Sci. 1986; 26(1): 34-44.
- 58Favis BD, Chalifoux JP. The effect of viscosity ratio on the morphology of polypropylene/polycarbonate blends during processing. Polym Eng Sci. 1987; 727: 1591.
10.1002/pen.760272105 Google Scholar
- 59Lamantia FP, Saiu M, Valenza A, Pact M, Magagnanini PL. Relationships between mechanical properties and structure for blend of nylon-6 with a liquid crystal polymer. Eur Polym J. 1990; 26(3): 323-327.
- 60Grof I, Durkova O, Jambrich M. Influence of an interfacial agent on the structure of polypropylene-polyamide fibers. Colloid Polym Sci. 1992; 270(1): 22-28.
- 61Qin Y. Drawing behavior of polyblend fibers from polypropylene and liquid crystal polymers. J Appl Polym Sci. 1994; 54(6): 735-742.
- 62Sundararajs U, Macosko CW. Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules. 1996; 28: 2647.
- 63Gonzalez-Nunez R, Kee D. The influence of coalescence on the morphology of the minor phase in melt drawn polyamide-6/HDPE blends. Polymer. 1996; 27: 4689.
- 64Lee JK, Han CD. Evolution of polymer blend morphology during compounding in an internal mixer. Polymer. 1999; 40(23): 6277-6296.
- 65Lyoo WS, Choi YG, Choi JH, Ha WS, Kim BC. Rheological and morphological properties of immiscible blends and microfiber preparation from the blends. Int Polym Proc. 2000; 15(4): 369-379.
- 66Afshari M, Kotek R, Haghighat Kish M, Nazok Dast H, Gupta BS. Effect of blend ratio on bulk properties and matrix-fibril morphology of polypropylene/nylon 6 polyblend fibers. Polymer. 2002; 43(4): 1331-1341.
- 67Tsebrenko MV, Rezanova VG, Tsebrenko IA. Influence of the degree of computability of polymer on the rheological properties of a mixture melt and the process of structure formation. J Eng Phys Thermophysics. 2003; 76(3): 552-561.
- 68Li Z, Li L, Shen K, Yang M, Huang R. In-situ microfibrillar PET/iPP blend via slit die extrusion, hot stretching, and quenching: influence of hot stretch ratio on morphology, crystallization, and crystal structure of iPP at a fixed PET concentration. J Polym Sci B. 2004; 42(22): 4095-4106.
- 69Li Z, Li L, Shen K, Yang W, Huang R, Yang M. Transcrystalline morphology of an in situ microfibrillar poly (ethylene terephthalate)/poly (propylene) blend fabricated through a slit extrusion hot stretching-quenching process. Macromol Rapid Commun. 2004; 25(4): 553-558.
- 70Kuvaeva P, Tsebrenko MV, Rezanova NM. Phenomenon of specific fiber formation in polypropylene/copolyamide mixtures contacting polyethyleneglycol. J Eng Phys Thermophysics. 2005; 78(5): 954-957.
- 71Xing Q, Zhu M, Wang Y, et al. In situ gradient nano-scale fibril formation during polypropylene (PP)/polystyrene (PS) composite fine fiber processing. Polymer. 2005; 46(14): 5406-5416.
- 72Fakirov S, Evstatiev M, Friedrich K. 6. Mechanical performance of nanostructured Polymer composites from blends of PET, PBT, PA6, PA66, PP and PE. In: S Fakirov, ed. Handbook of Thermoplastic Polymers. Weinheim: Homopolymers, Copolymers, Blends, and Composites, Wiley-VCH; 2002.
10.1002/3527601961 Google Scholar
- 73Shields RJ, Bhattachary D, Fakirov S. Fibrillar polymer-polymer composites: morphology, properties and applications. J Mater Sci. 2008; 43: 6758.
- 74Badrossamay MR, Sun G. Durable and rechargeable biocidal polypropylene polymers and fibers prepared by using reactive extrusion. J Biomed Mater Res Part B: Appl Biomater. 2009; 89: 93.
- 75Yang J, White JL, Jiang Q. Phase morphology development in a low interfacial tension immiscible polyolefin blend during die extrusion and melt spinning. Polym Eng Sci. 2010; 50(1969): 1969-1977.
- 76Wang D, Sun G. Novel polymer blends from polyester and bio-based cellulose ester. J Appl Polym Sci. 2011; 119(4): 2302-2309.
- 77Dencheva N, Denchev Z, Oliveira MJ, Funari SS. Microstructure studies of in situ composites based on polyethylene/polyamide 12 blends. Macromolecules. 2010; 43(10): 4715-4726.
- 78Zeinolebadi A, Stribeck N, Ganjaee-Sari M, Dencheva N, Denchev Z, Botta S. Nanostructure evolution mechanisms during slow load-cycling of oriented HDPE/PA microfibrillar blends as a function of composition. Macromol Mater Eng. 2012; 297(11): 1102-1113.
- 79Tavanaie MA, Shoushtari AM, Goharpey F, Mojtahedi MR. Matrix-fibril morphology development of polypropylene/poly (butylenes terephthal-ate) blend fibers at different zones of melt spinning process and its relation to mechanical properties. Fibers Polym. 2013; 14(3): 396-404.
- 80Fakirov S. Nano- and microfibrillar single-polymer composites: a review. Macromol Mater Eng. 2013; 298(1): 9-32.
- 81An Tran NH, Brünig H, Boldt R, Heinrich G. Morphology development from rod-like to nanofibrillar structures of dispersed poly (lactic acid) phase in a binary blend with poly (vinyl alcohol) matrix along the spin line. Polymer. 2014; 55(24): 6354-6363.
- 82An Tran NH, Brunig H, Heinrich G. Controlling micro- and nanofibrillar morphology of polymer blends in low-speed melt spinning process. Part I. Profiles of PLA/PVA-filament parameters along the spinline. J Appl Polym Sci. 2016; 133:44258.
- 83An Tran NH, Brunig H, Auf der Landwehr M, Vogel R, Pionteck J, Heinrich G. Controlling micro- and nanofibrillar morphology of polymer blends in low-speed melt spinning process. Part II. Influences of extrusion rate on morphological changes of a PLA/PVA blend through a capillary die. J Appl Polym Sci. 2016; 133:44257.
- 84An Tran NH, Brunig H, Auf der Landwehr M, Heinrich G. Controlling micro- and nanofibrillar morphology of polymer blends in low-speed melt spinning process. Part III. Fibrillation mechanism of PLA/PVA blends along the spinline. J Appl Polym Sci. 2016; 133:44259.
- 85Merriam CN, Miller WA. US Patent 0096067 (1963).
- 86Brydson JA. Flow properties of polymer melts. Van Nostrand Reinhold Co New York. 1970; 21.
- 87Huang K, Wang B, Cao Y, et al. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid. J Agric Food Chem. 2011; 59(10): 5376-5381.
- 88Wang D, Sun G, Chiou B-S. A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromol Mater Eng. 2007; 292(4): 407-414.
- 89Wang D, Sun G. Formation and morphology of cellulose acetate butyrate (CAB)/polyolefin and CAB/polyester in situ microfibrillar and lamellar hybrid blends. Eur Polym J. 2007; 43(8): 3587-3596.
- 90Wang D, Sun G, Chiou B-S, Hinestroza JP. Controllable fabrication and properties of polypropylene nanofibers. Polym Eng Sci. 2007; 47(11): 1865-1872.
- 91Wang D, Sun G, Chiou B-S. Fabrication of tunable submicro- or nano-structured polyethylene materials from immiscible blends with cellulose acetate butyrate. Macromol Mater Eng. 2008; 293(8): 657-665.
- 92Xue CH, Wang D, Xiang B, Chiou B-S, Sun G. Morphology evolution of polypropylene in immiscible blends for fabrication of nanofibers. J Polym Sci B. 2010; 48(9): 921-923.
- 93Xue CH, Wang D, Xiang B, Chiou B-S, Sun G. Controlled and high throughput fabrication of poly (trimethylene terephthalate) nanofibers via melt extrusion of immiscible blends. Mater Chem Phys. 2010; 124(1): 48-51.
- 94Xue CH, Wang D, Xiang B, Chiou BS, Sun G. Morphological development of polypropylene in immiscible blends with cellulose acetate butyrate. J Polym Res. 2011; 18(6): 1947-1953.
- 95Li M, Xiao R, Sun G. Formation and morphology development poly (butylene terephthalate) nanofibers from poly (butylene terephthalate)/cellulose acetate butyrate immiscible blends. Polym Eng Sci. 2011; 51(5): 835-842.
- 96Li M, Xiao R, Sun GJ. Morphology development and size control of poly (trimethylene terephthalate) nanofibers prepared from poly (trimethylene terephthalate)/cellulose acetate butyrate in situ fibrillar composites. Mater Sci Forum. 2011; 46(13): 4524-4531.
- 97Li M, Xiao R, Sun G. Preparation of polyester nanofibers and nanofiber yarns from polyester/cellulose acetate butyrate immiscible polymer blends. J Appl Polym Sci. 2012; 124(1): 28-36.
- 98Wang D, Sun G, Xiang B, Chiou B-S. Controllable biotinylated poly (ethylene-co-glycidyl methacrylate) (PE-co-GMA) nanofibers to bind streptavidin–horseradish peroxidase (HRP) for potential biosensor applications. Eur Polym J. 2008; 44(7): 2032-2039.
- 99Zhua M, Xua G, Yua M, Liu Y, Xiaoa R. Preparation, properties, and application of polypropylene micro/nanofiber membranes. Polym Adv Technol. 2012; 23: 247-254.
- 100Wang D, Sun G, Yu L. Recyclability of cellulose acetate butyrate (CAB) matrix for controllable and productive fabrication of thermoplastic nanofibers. Carbohydr Polym. 2011; 83(3): 1095-1100.
- 101Fakirov S, Bhattacharyya D, Shields RJ. Nanofibril reinforced composites from polymer blends. Colloid Surfac a: Physicochem Eng Aspects. 2008; 313–314: 2-8.
- 102Fakirov S. Modified Soxhlet apparatus for high-temperature extraction. J Appl Polym Sci. 2006; 102(2): 2013-2014.
- 103Duhovic M, Bhattacharyya D, Fakirov S. Nanofibrillar single polymer composites of poly (ethylene terephthalate). Macromol Mater Eng. 2010; 295: 95-99.
- 104Fakirov S, Bhattacharyya D, Duhovic M, Maitrot P. From PET nanofibrils to nanofibrillar single- polymer composites. Macromol Mater Eng. 2010; 295(6): 515-518.
- 105Fallahi E, Barmar M, Kish MH. Micro and nano fibrils from polypropylene/nylon 6 blends. J Appl Polym Sci. 2008; 108(3): 1473-1481.
- 106Fallahi E, Barmar M, Kish MH. Nanofibrils from nylon 6/polypropylene-g-maleic anhydride/polypropylene blended filaments. Iran Polym J. 2011; l20: 433.
- 107Fallahi E, Barmar M, Kish MH. Wide angle X-ray diffraction and DSC analysis of grafted polypropylene/polypropylene/nylon 6 blended filaments, 9th International Seminar on Polymer Science and Technology, ISPST 2009, Tehran, Iran, 2009.
- 108Kochak EB, Fallahi E, Kish MH. Extraction of micro- and nano-fibrils from nylon 6/polypropylene grafted with maleic anhydride/polypropylene blended films. Iran J Polym Sci Technol. 2010; 23: 155.
- 109Stribeck N, Zeinolebadi A, Fakirov S, Bhattacharyya D, Botta S. Extruded blend films of poly (vinyl alcohol) and polyolefins: common and hard-elastic nanostructure evolution in the polyolefin during straining as monitored by SAXS. Sci Technol Adv Mater. 2013; 14:35006.
- 110An Tran NH, Brunig H, Hinuber C, Heinrich G. Melt spinning of biodegradable nanofibrillary structures from poly (lactic acid) and poly (vinyl alcohol) blends. Macromol Mater Eng. 2014; 299(2): 219-227.
- 111Huang Q, Xiao C, Hu X, Feng Li X. Study on the effects and properties of hydrophobic poly (tetrafluoroethylene) membrane. Desalination. 2011; 277(1-3): 187-192.
- 112Zhang Z, Tu W, Peijs T, Bastiaansen CWM. Fabrication and properties of poly (tetrafluoroethylene) nanofibres via sea-island spinning. Polymer. 2017; 109: 321-331.
- 113Dehghan N, Tavanaie MA. Morphology study of nanofibers produced by extraction from polymer blend fibers using image processing. Korean J Chem Eng. 2015; 32(9): 1928-1937.
- 114Zhao F, Liu Y, Ding Y, Yan H, Xie P, Yang W. Effect of plasticizer and load on melt electrospinning of PLA. key Eng Mater. 2012; 501: 32-36.
- 115Rangkupan R, Reneker DH. Electrospinning process of molten polypropylene in vacuum, journal of metals. Materials and Minerals. 2003; 12(2): 81.
- 116Kadomae Y, Maruyama Y, Sugimoto M, Taniguchi T, Koyama K. Relation between tacticity and fiber diameter in melt-electrospinning of polypropylene. Fibers and Polymers. 2009; 10(3): 279.
- 117Cho D, Zhou H, Cho Y, Audus D, Lak Joo Y. Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt. Polymer. 2010; 51(25): 6005-6012.
- 118Hao M, Liu Y, He X, Ding Y, Yang W. Factors influencing diameter of polypropylene fiber in melt electrospinning. Adv Mat Res. 2011; 221: 129-134.
- 119Fang J, Zhang L, Sutton D, Wang X, Lin T. Needleless melt-electrospinning of polypropylene nanofibres. Journal of Nanomaterials. 2012.
- 120Nayak R, Louis I, Truong KYB, Padhye R, Arnold L. Melt-electrospinning of polypropylene with conductive additives. J Mater Sci. 2012; 47: 6387.
- 121Li H, Wu W, Bubakir MM, et al. Polypropylene fibers fabricated via a needleless melt-electrospinning device for marine oil-spill cleanup. J Appl Polym Sci. 2014; 131.
- 122Li H, Ding Y, Liu Y, Zhang Y, Yang W. The preparation of polypropylene/polyvinyl alcohol ultra-fine fibers using melt electrospinning method. Key Engineering Materials. 2013; 561: 8-12.
- 123Liu S, Liang Y, Quan Y, et al. Electrospun isotactic polypropylene fibers: self-similar morphology and microstructure. Polymer. 2013; 54(12): 3117-3123.
- 124Chen Z, He J, Zhao F, Liu Y, Liu Y, Yuan H. Effect of polar additives on melt electrospinning of non-polar polypropylene. J Serb Chem Soc. 2014; 79(5): 587.
- 125Shen Y, Liu Q, Deng B, Yao P, Xia S. Experimental study and prediction of the diameter of melt-electrospinning polypropylene fiber. Fibers and Polymers. 2016; 17: 8.