Biodegradable polymer/clay systems for highly controlled release of NPK fertilizer
Tales S. Daitx
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorMarcelo Giovanela
Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Brazil
Search for more papers by this authorCorresponding Author
Larissa N. Carli
Campus Blumenau, Universidade Federal de Santa Catarina, Blumenau, Brazil
Correspondence
Larissa N. Carli, Campus Blumenau, Universidade Federal de Santa Catarina, Rua João Pessoa, 2514, Blumenau, 89036-004 SC, Brazil.
Email: [email protected]
Raquel S. Mauler, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Raquel S. Mauler
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence
Larissa N. Carli, Campus Blumenau, Universidade Federal de Santa Catarina, Rua João Pessoa, 2514, Blumenau, 89036-004 SC, Brazil.
Email: [email protected]
Raquel S. Mauler, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil.
Email: [email protected]
Search for more papers by this authorTales S. Daitx
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorMarcelo Giovanela
Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Brazil
Search for more papers by this authorCorresponding Author
Larissa N. Carli
Campus Blumenau, Universidade Federal de Santa Catarina, Blumenau, Brazil
Correspondence
Larissa N. Carli, Campus Blumenau, Universidade Federal de Santa Catarina, Rua João Pessoa, 2514, Blumenau, 89036-004 SC, Brazil.
Email: [email protected]
Raquel S. Mauler, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Raquel S. Mauler
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence
Larissa N. Carli, Campus Blumenau, Universidade Federal de Santa Catarina, Rua João Pessoa, 2514, Blumenau, 89036-004 SC, Brazil.
Email: [email protected]
Raquel S. Mauler, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil.
Email: [email protected]
Search for more papers by this authorAbstract
The aim of this work was to obtain biodegradable polymeric systems based on poly(hydroxybutyrate) (PHB) for use in the controlled release of agrochemicals and to analyze the relationship between the properties of polymers and the rates of release of active compounds. Two types of systems were obtained: one using nitrogen, phosphorous, and potassium (NPK) fertilizer directly mixed within the polymer matrix and another with the fertilizer previously incorporated in bentonite (Bent) and mixed with the polymer. The systems were obtained by melt processing and then evaluated by their properties. The release of the active compounds was analyzed by conductometric analysis using an aqueous solution as release medium for 240 hours. The obtained results were correlated with the biodegradation process of PHB. All of the systems presented a significant reduction in the active compounds released to the environment as compared with the direct application of NPK. The PHB/NPK systems showed a release of up to 37% of the compounds, while the PHB/m-Bent showed greater control, with a release between 4% and 11% after 240 hours. In addition, the properties of the polymer systems presented a direct relationship with the rate of active compounds released. The type of production process, properties, and biodegradability indicate interesting potential of these systems for application in the controlled release of active compounds.
REFERENCES
- 1McKinlay R, Dassyne J, Djamgoz MBA, Plant JA, Voulvoulis N. Agricultural Pesticides and Chemical Fertilisers. Chichester: John Wiley & Sons; 2012 181 p.
- 2Noppakundilograt S, Pheatcharat N, Kiatkamjornwong S. Multilayer-coated NPK compound fertilizer hydrogel with controlled nutrient release and water absorbency. J Appl Polym Sci. 2015; 132:41249.
- 3Jiang J, Hu Z, Sun W, Huang Y. Nitrous oxide emissions from Chinese cropland fertilized with a range of slow-release nitrogen compounds. Agric Ecosyst Environ. 2010; 135(3): 216-225.
- 4Dubey S, Jhelum V, Patanjali PK. Controlled release agrochemicals formulations: a review. J Sci Ind Res. 2011; 70: 105-112.
- 5Roy A, Singh SK, Bajpai J, Bajpai AK. Controlled pesticide release from biodegradable polymers. Cent Eur J Chem. 2014; 12(4): 453-469.
- 6Yapparov K, Bikkinina LM-K, Yapparov IA, et al. Changes in the properties and productivity of leached chernozem and gray forest soil under the impact of ameliorants. Euras Soil Sci. 2015; 48(10): 1149-1158.
- 7Pereira EI, Minussi FB, da Cruz CCT, Bernardi ACC, Ribeiro C. Urea-montmorillonite-extruded nanocomposites: a novel slow-release material. J Agric Food Chem. 2012; 60(21): 5267-5272.
- 8Kim KS, Kim M-T, Ryu J-H, et al. Metal-urea-montmorillonite hybrid incorporated with citric acid. Korean J Soil Sci Fert. 2013; 46(6): 610-614.
- 9Teixeira-Neto É, Teixeira-Neto ÂA. Modificação química de argilas: desafios científicos e tecnológicos para obtenção de novos produtos com maior valor agregado. Quím Nova. 2009; 32(3): 809-817.
- 10Shavit U, Reiss M, Shaviv A. Wetting mechanisms of gel-based controlled-release fertilizers. J Control Release. 2003; 88(1): 71-83.
- 11Bortolin A, Aouada FA, Mattoso LHC, Ribeiro C. Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem. 2013; 61(31): 7431-7439.
- 12Hemvichian K, Chanthawong A, Suwanmala P. Synthesis and characterization of superabsorbent polymer prepared by radiation-induced graft copolymerization of acrylamide onto carboxymethyl cellulose for controlled release of agrochemicals. Rad Phys Chem. 2014; 103: 167-171.
- 13Rashidzadeh A, Olad A. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly (AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohyd Polym. 2014; 114: 269-278.
- 14Rashidzadeh A, Olad A, Salari D, Reyhanitabar A. On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly (acrylicacid-co-acrylamide)/clinoptilonite and its application as slow release fertilizer. J Polym Res. 2014; 21(2): 344.
- 15Boyandin AN, Zhila NO, Kiselev EG, Volova TG. Constructing slow-release formulations of metribuzin based on degradable poly(3-hydroxybutyrate). J Agric Food Chem. 2016; 64(28): 5625-5632.
- 16Li P, Lu J, Wang Y, et al. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agric Ecosyst Environ. 2018; 258: 78-87.
- 17Senna AM, Botaro VR. Biodegradable hydrogel derived from celulose acetate and EDTA as a reduction substrate of leaching NPK compound fertilizer and water retention in soil. J Control Release. 2017; 260: 194-201.
- 18Calabria L, Vieceli N, Bianchi O, Oliveira RVB, Filho IN, Schmidt V. Soy protein isolate/poly (lactic acid) injection-molded biodegradable blends for slow release of fertilizers. J Ind Crop Prod. 2012; 36(1): 41-46.
- 19Xiaoyu N, Yuejin W, Lin W, Guannan Q, Lixiang Y. A novel slow-release urea fertiliser: physical and chemical analysis of its structure and study of its release mechanism. Biosyst Eng. 2013; 115(3): 274-282.
- 20Daitx TS, Carli LN, Mauler RS. Processo para o preparo de sistemas poliméricos biodegradáveis aplicados à liberação controlada de agroquímicos e produtos, BR1020150164548; 2015.
- 21Costa MME, Cabral-Albuquerque ECM, Alves TLM, Pinto JC, Fialho RL. Use of polyhydroxybutyrate and ethyl cellulose for coating of urea granules. J Agri Food Chem. 2013; 61(42): 9984-9991.
- 22Volova TG, Prudnikova SV, Boyandin AN. Biodegradable poly-3-hydroxybutyrate as a fertilizer carrier. J Sci Food Agric. 2016; 96(12): 4183-4193.
- 23Boyandin AN, Kazantseva EA, Varygina DE, Volova TG. Constructing slow-release formulations of ammonium nitrate fertilizer based on degradable poly(3-hydroxybutyrate). J Agri Food Chem. 2013; 65: 6745-6752.
- 24Daitx TS, Carli LN, Crespo JS, Mauler RS. Effects of the organic modification of different clay minerals and their application in biodegradable polymer nanocomposites of PHBV. Appl Clay Sci. 2015; 115: 157-164.
- 25Gogolewski S, Jovanovic M, Perren SM, Dillon JG, Hughes MK. The effect of melt-processing on the degradation of selected polyhydroxyacids: polylactides, polyhydroxybutyrate, and polyhydroxybutyrate-co-valerates. Polym Degrad Stab. 1993; 40(3): 313-322.
- 26Carli LN, Daitx TS, Soares GV, Crespo JS, Mauler RS. The effects of silane coupling agents on the properties of PHBV/halloysite nanocomposites. Appl Clay Sci. 2014; 87: 311-319.
- 27Nikolaidis AK, Achilias DS, Karayannidis GP. Effect of the type of organic modifier on the polymerization kinects and the properties of poly (methylmethacrylate)/organomodified montmorillonite nanocomposites. Eur Polym J. 2012; 48(2): 240-251.
- 28Andjelic S, Scogna RC. Polymer crystallization rate challenges: the art of chemistry and processing. J Appl Polym Sci. 2015; 132:42066.
- 29Carli LN, Bianchi O, Machado G, Crespo JS, Mauler RS. Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering. Mat Sci Eng C. 2013; 33(2): 932-937.
- 30Luo S, Grubb DT, Netravali AN. The effect of molecular weight on the lamellar structure, thermal and mechanical properties of poly (hydroxybutyrate-co-hydroxyvalerates). Polymer. 2002; 43(15): 4159-4166.
- 31Javadi A, Kramschuster AJ, Pilla S, Lee J, Gong S, Turng L-S. Processing and characterization of microcellular PHBV/PBAT blends. Polym Eng Sci. 2010; 50(7): 1440-1448.
- 32Zhao H, Cui Z, Wang X, Turng L-S, Peng X. Processing and characterization of solid and microcellular poly (lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/clay nanocomposites. Compos Part B. 2013; 51: 79-91.
- 33Irfan SA, Razali R, KuShaari K, Mansor N, Azeem B, Versypt ANF. A review of mathematical modeling and simulation of controlled-release fertilizers. J Control Release. 2018; 271: 45-54.
- 34Casarin SA, Agnelli JAM, Malmonge SM, Rosário F. Blendas PHB/copoliésteres biodegradáveis: biodegradação em solo. Polímeros. 2013; 23(1): 115-122.