Microstructure, thermal stability, and mechanical properties of modified polycarbonate with polyolefin and silica nanoparticles
Corresponding Author
Iman Taraghi
Department of Mechanical Engineering, Semnan University, Semnan, 35131-19111 Iran
Institute of Material Science and Engineering, West Pomeranian University of Technology, Szczecin, Piastow Avenue 19, PL70310 Poland
Correspondence to: Iman Taraghi, Department of Mechanical Engineering, Semnan University, Semnan, 35131-19111, Iran.
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbdolhossein Fereidoon
Department of Mechanical Engineering, Semnan University, Semnan, 35131-19111 Iran
Search for more papers by this authorSandra Paszkiewicz
Institute of Material Science and Engineering, West Pomeranian University of Technology, Szczecin, Piastow Avenue 19, PL70310 Poland
Search for more papers by this authorAnna Szymczyk
Institute of Physics, West Pomeranian University of Technology, Szczecin, Piastow Avenue 48, PL70311 Poland
Search for more papers by this authorRenata Chylinska
Institute of Material Science and Engineering, West Pomeranian University of Technology, Szczecin, Piastow Avenue 19, PL70310 Poland
Search for more papers by this authorAgnieszka Kochmanska
Institute of Material Science and Engineering, West Pomeranian University of Technology, Szczecin, Piastow Avenue 19, PL70310 Poland
Search for more papers by this authorZbigniew Roslaniec
Institute of Material Science and Engineering, West Pomeranian University of Technology, Szczecin, Piastow Avenue 19, PL70310 Poland
Search for more papers by this authorCorresponding Author
Iman Taraghi
Department of Mechanical Engineering, Semnan University, Semnan, 35131-19111 Iran
Institute of Material Science and Engineering, West Pomeranian University of Technology, Szczecin, Piastow Avenue 19, PL70310 Poland
Correspondence to: Iman Taraghi, Department of Mechanical Engineering, Semnan University, Semnan, 35131-19111, Iran.
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbdolhossein Fereidoon
Department of Mechanical Engineering, Semnan University, Semnan, 35131-19111 Iran
Search for more papers by this authorSandra Paszkiewicz
Institute of Material Science and Engineering, West Pomeranian University of Technology, Szczecin, Piastow Avenue 19, PL70310 Poland
Search for more papers by this authorAnna Szymczyk
Institute of Physics, West Pomeranian University of Technology, Szczecin, Piastow Avenue 48, PL70311 Poland
Search for more papers by this authorRenata Chylinska
Institute of Material Science and Engineering, West Pomeranian University of Technology, Szczecin, Piastow Avenue 19, PL70310 Poland
Search for more papers by this authorAgnieszka Kochmanska
Institute of Material Science and Engineering, West Pomeranian University of Technology, Szczecin, Piastow Avenue 19, PL70310 Poland
Search for more papers by this authorZbigniew Roslaniec
Institute of Material Science and Engineering, West Pomeranian University of Technology, Szczecin, Piastow Avenue 19, PL70310 Poland
Search for more papers by this authorAbstract
In this manuscript, the supramolecular structure and dynamic mechanical thermal behavior of the polycarbonate (PC)/ethylene propylene copolymer (EPC)/silica (SiO2) nanocomposites (NCs) have been studied. The morphological analysis of the fractured Izod impact surfaces revealed the mechanism of energy absorption for the elastomeric particle in front of the crack growth. The cracks growth and deformation of voids around the EPC phase are the main factors for energy absorption during the notched-Izod impact test. The presence of the SiO2 nanoparticles (NPs) in the PC phase causes the increase in the values of the impact strength for the NCs specimens. No new peaks and bonds were observed in the Fourier transform infrared (FTIR) spectra, and consequently, the phase behavior of the PC/EPC blends did not change significantly upon SiO2 addition. The dynamic mechanical thermal analysis result confirms the existence of two glass transitions temperatures and independence of all components in the system. Examination of the interfacial studies revealed that the SiO2 NPs do not exist at the interface of PC and EPC. In addition, applying SiO2 NPs into the blends improved the storage modulus (E′) and thermal stability of the PC/EPC/SiO2 NCs. Copyright © 2017 John Wiley & Sons, Ltd.
References
- 1D. N. Bikiaris, G. Z. Papageorgiou, E. Pavlidou, N. Vouroutzis, P. Palatzoglou, G. P. Karayannidis, J. Appl. Polym. Sci. 2006, 100, 2684.
- 2M. Grala, Z. Bartczak, A. Różański, J. Polym. Res. 2016, 23, 25.
- 3S. Song, S. Sun, H. Zhang, J. Polym. Res. 2016, 23, 119.
- 4I. Dabrowska, L. Fambri, A. Pegoretti, M. Slouf, T. Vackova, J. Kolarik, Express Polym Lett 2015, 9, 277.
- 5L. D. Perez, L. F. Giraldo, W. Brostow, B. L. Lopez, E-Polymers 2007, 29, 1.
- 6B. Bilyeu, W. Brostow, L. Chudej, M. Estevez, H. E. Hagg Lobland, J. R. Rodriguez, S. Vargas, Mater. Res. Innov. 2007, 11, 181.
- 7W. Brostow, W. Chonkaew, T. Datashvili, K. P. Menard, J. Nanosci. Nanotechnol. 2008, 8, 1916.
- 8W. Chonkaew, W. Minghvanish, U. Kungliean, N. Rochanawipart, W. Brostow, J. Nanosci. Nanotechnol. 2011, 11, 2018.
- 9S. Guo, R. Sivakumar, Y. Kagawa, Adv. Eng. Mater. 2015, 9, 1.
- 10M. H. G. Wichmann, M. Cascione, B. Fiedler, M. Quaresimin, K. Schulte, Commun. Int. 2006, 13, 699.
- 11Y. Zheng, Y. Zheng, R. Ning, Mater. Lett. 2003, 57, 2940.
- 12J. Li, J. Suo, R. Deng, J. Reinf. Plast. Compos. 2010, 29, 618.
- 13G. Gedler, M. Antunes, V. Realinho, J. I. Velasco, Polym. Degrad. Stab. 2012, 97, 1297.
- 14P. Pötschke, T. D. Fornes, D. R. Paul, Polymer 2002, 43, 3247.
- 15R. J. Zhou, T. Burkhart, J. Thermoplast. Compos. Mater. 2010, 23, 487.
- 16B. S. Rathore, M. S. Gaur, K. S. Singh, J. Appl. Polym. Sci. 2012, 126, 960.
- 17B. S. Rathore, M. S. Gaur, K. S. Singh, J. Therm. Anal. Calorim. 2012, 107, 675.
- 18J. L. H. Chau, S. L. C. Hsu, Y. M. Chen, C. C. Yang, P. C. F. Hsu, Adv. Powder Technol. 2010, 21, 341.
- 19L. Lin, A. K. Schlarb, J. Mater. Sci. 2012, 47, 6614.
- 20T. E. Motaung, M. L. Saladino, A. S. Luyt, D. F. Chillura Martino, Compos. Sci. Technol. 2012, 73, 34.
- 21Y. Feng, B. Wang, F. Wang, G. Zheng, K. Dai, C. Liu, J. Chen, C. Shen, J. Reinf. Plast. Compos. 2014, 33, 911.
- 22Y. Feng, B. Wang, F. Wang, Y. Zhao, C. Liu, J. Chen, C. Shen, Polym. Degrad. Stab. 2014, 107, 129.
- 23F. C. Chang, J. S. Wu, L. H. Chu, J. Appl. Polym. Sci. 1992, 44, 491.
- 24K. Cho, J. Yang, S. Yoon, M. H. S. V. Nair, J. Appl. Polym. Sci. 2005, 95, 748.
- 25A. Azizi, A. Arefazar, O. M. Jazani, Polym.-Plast. Technol. Eng. 2013, 52, 1595.
- 26A. Garhwal, S. N. Maiti, Polym. Bull. 2016, 73, 1719.
- 27Y. Guo, J. He, X. Zhang, S. Sun, H. Zhang, J. Macromol. Sci. Part B: Phys. 2015, 54, 823.
- 28I. González, P. Santamaría, J. I. Eguiazábal, Compos. Part A 2015, 71, 227.
- 29J. Li, X. Wang, C. Yang, J. Yang, Y. Wang, J. Zhang, Compos. Part A 2016, 90, 200.
- 30A. Göldel, G. Kasaliwal, P. Pötschke, Macromol. Rapid Commun. 2009, 30, 423.
- 31F. Laoutid, E. Estrada, R. M. Michell, L. Bonnaud, A. H. Müller, P. Dubois, Polymer 2013, 54, 3982.
- 32R. Zong, Y. Hua, S. Wang, L. Song, Polym. Degrad. Stab. 2004, 83, 423.
- 33E. Feyz, Y. Jahani, M. Esfandeh, J. Appl. Polym. Sci. 2011, 120, 3435.
- 34X. Gao, Y. Zhu, X. Zhao, Z. Wang, D. An, Y. Ma, S. Guan, Y. Du, B. Zhou, Appl. Surf. Sci. 2011, 257, 4719.
- 35P. Santamaría, I. González, J. I. Eguiazábal, Polym. Adv. Technol. 2015, 26, 665.
- 36W. S. Chow, S. S. Neoh, Polym.-Plast. Technol. Eng. 2010, 49, 62.
- 37S. Taheri, E. Nakhlband, H. Nazockdast, Polym.-Plast. Technol. Eng. 2013, 52, 300.
- 38I. Taraghi, A. Fereidoon, S. Paszkiewicz, Z. Roslaniec, J. Appl. Polym. Sci. 2017, 134, 44661.
- 39I. Taraghi, A. Fereidoon, M. M. Zamani, A. Mohyeddin, J. Compos. Mater. 2015, 49, 3557.
- 40N. A. Memon, J. Polym. Sci. Part B. Polym. Phys. 1998, 36, 1095.
- 41Y. S. Seo, J. H. Kim, C. K. Kim, R. Lee, J. K. Keum, J. Appl. Polym. Sci. 2005, 96, 2097.
- 42M. Kumar, S. Mohanty, S. K. Nayak, M. R. Parvaiz, Bioresour. Technol. 2010, 101, 8406.
- 43Y. Yoo, L. Cui, P. J. Yoon, D. R. Paul, Macromolecules 2010, 43, 615.
- 44K. L. Hoy, J. Paint. Technol. 1970, 42, 76.
- 45D. M. Koenhen, C. A. Smolders, J. Appl. Polym. Sci. 1975, 19, 1163.
- 46D. W. Van Krevelen, K. Te Nijenhuis, Properties of Polymers, fourth edn. . Elsevier B. V, Amsterdam, 2009, 201–222.
- 47P. Schmidt, J. Dybal, E. Turska, A. Kulczycki, Polymer 1991, 32 , 1862.
- 48N. Heymans, B. Dequenne, Polymer 2001, 42, 5337.
- 49N. Heymans, S. V. Rossum, J. Mater. Sci. 2002, 37, 4273.
- 50S. Al-Malaika, W. Kong, Polymer 2005, 46, 209.
- 51Y. Feng, B. Wang, F. Wang, Y. Zhao, C. Liu, J. Chen, C. Shen, Polym. Degrad. Stab. 2014, 107, 129.
- 52Y. Feng, B. Wang, Y. Chen, C. Liu, J. Chen, C. Shen, Polym. Degrad. Stab. 2015, 119, 295.
- 53J. P. He, H. M. Li, X. Y. Wang, Y. Gao, Eur. Polym. J. 2006, 42, 1128.
- 54A. S. Luyt, M. Messori, P. Fabbri, J. P. Mofokeng, R. Taurino, T. Zanasi, F. Pilati, Polym. Bull. 2011, 66, 991.
- 55W. Brostow, H. E. Hagg Lobland, Materials: Introduction and Applications. John Wiley & Sons, New York, 2017.
- 56W. Brostow, H. E. Hagg Lobland, M. Narkis, J. Mater. Res. 2006, 21, 2422.
- 57J. H. Hong, Y. T. Sung, K. H. Song, W. N. Kim, B. I. Kang, S. L. Kim, C. H. Lee, Commun. Int. 2007, 14, 519.
- 58S. V. Levchik, E. D. Weil, Polym. Int. 2005, 54, 981.
- 59X. Wen, K. Zhang, Y. Wang, L. Han, C. Han, H. Zhang, S. Chen, L. Dong, Polym. Int. 2011, 60, 202.
- 60X. Zhang, Y. Guan, Y. Zhao, Z. Zhang, D. Qiu, Polym. Int. 2015, 64, 992.
- 61I. González, J. I. Eguiazábal, J. Nazábal, Eur. Polym. J. 2006, 42, 2905.
- 62S. Sun, F. Zhang, Y. Fu, C. Zhou, H. Zhang, J. Macromol. Sci. Part B: Phys. 2013, 52, 861.
- 63Q. Jia, M. Zheng, J. Cheng, H. Chen, Polym. Int. 2006, 55, 1259.
- 64W. Brostow, H. E. Hagg Lobland, J. Mater. Sci. 2010, 45, 242.
- 65W. Brostow, H. E. Hagg Lobland, S. Khoja, Mater. Lett. 2015, 159, 478.