Hemostasis mechanism and applications of N-alkylated chitosan sponge
Yuchen Huang
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, 510632 China
Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 China
These authors contributed equally to this work.Search for more papers by this authorLongbao Feng
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, 510632 China
Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 China
These authors contributed equally to this work.Search for more papers by this authorYi Zhang
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, 510632 China
Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorLiumin He
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, 510632 China
Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorChangyong Wang
Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, 100850 China
Search for more papers by this authorJiake Xu
School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, 6009 Australia
Search for more papers by this authorJianping Wu
3D Imaging and Bioengineering Laboratory, the Department of Mechanical Engineering, Curtin University, Perth, WA, Australia
Search for more papers by this authorThomas Brett Kirk
3D Imaging and Bioengineering Laboratory, the Department of Mechanical Engineering, Curtin University, Perth, WA, Australia
Search for more papers by this authorCorresponding Author
Rui Guo
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, 510632 China
Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 China
Correspondence to: Rui Guo, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
E-mail: [email protected]
Wei Xue, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institute, Guangzhou 510632, China.
E-mail: [email protected]
Search for more papers by this authorCorresponding Author
Wei Xue
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, 510632 China
Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 China
Key Laboratory of Functional Protein Research of Guangdong Higher Education Institute, Guangzhou, 510632 China
Correspondence to: Rui Guo, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
E-mail: [email protected]
Wei Xue, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institute, Guangzhou 510632, China.
E-mail: [email protected]
Search for more papers by this authorYuchen Huang
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, 510632 China
Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 China
These authors contributed equally to this work.Search for more papers by this authorLongbao Feng
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, 510632 China
Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 China
These authors contributed equally to this work.Search for more papers by this authorYi Zhang
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, 510632 China
Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorLiumin He
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, 510632 China
Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorChangyong Wang
Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, 100850 China
Search for more papers by this authorJiake Xu
School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, 6009 Australia
Search for more papers by this authorJianping Wu
3D Imaging and Bioengineering Laboratory, the Department of Mechanical Engineering, Curtin University, Perth, WA, Australia
Search for more papers by this authorThomas Brett Kirk
3D Imaging and Bioengineering Laboratory, the Department of Mechanical Engineering, Curtin University, Perth, WA, Australia
Search for more papers by this authorCorresponding Author
Rui Guo
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, 510632 China
Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 China
Correspondence to: Rui Guo, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
E-mail: [email protected]
Wei Xue, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institute, Guangzhou 510632, China.
E-mail: [email protected]
Search for more papers by this authorCorresponding Author
Wei Xue
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, 510632 China
Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 China
Key Laboratory of Functional Protein Research of Guangdong Higher Education Institute, Guangzhou, 510632 China
Correspondence to: Rui Guo, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
E-mail: [email protected]
Wei Xue, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institute, Guangzhou 510632, China.
E-mail: [email protected]
Search for more papers by this authorAbstract
Chitosan (CHI) is a versatile biological material that is well known for its hemostatic properties. This preliminary study evaluated several self-assembling hydrophobically modified chitosan (HM–CHI) sponges to determine their efficacy on hemostasis. Fourier transform infrared (FT-IR) spectroscopy was used to determine the successful graft of dodecyl groups onto the nitrogen atoms of CHI molecules. A platelet aggregation assay revealed that HM–CHI accelerated the platelet aggregation rate. Fluorescence spectroscopy showed that the HM–CHI changed the structure of fibrinogen in blood. Activated partial thromboplastin time, prothrombin time, fibrinogen time, and thromboelastographic assays were used to explore the effect of HM–CHI on the autologous blood coagulation pathway. Finally, a hemostatic sponge was made with HM–CHI and freeze-dried zeolite composite film and was applied to the rat femoral artery hemostasis model. A hemostasis time of 86 ± 5 sec was achieved, which was significantly better than the one composed with pure CHI. The experimental results of the HM–CHI hemostatic materials are inspiring and will encourage the research and development of such materials. HM–CHI may be a strong candidate as a safe and effective hemostatic material. Copyright © 2017 John Wiley & Sons, Ltd.
Supporting Information
Filename | Description |
---|---|
pat4003-sup-0001-SI.docWord document, 2.3 MB |
Table S1. Comparison of swelling rate of hemostatic material at pH7.4. Table S2. Parameters of aggregation of platelets. Fig.S1. The SEM images of composite of (A) HM-CHI internal structure, (B) HM-CHI surface structure and (C) HM-CHI overall appearance structure. Fig.S2. Observation of blood coagulation after mixing blood with HM-CHI of (A) is not modified samples after mixted with blood show flow state and (B) is the modified product mixed with blood samples show gel state. Fig.S3. Photographs showing rats after subjected to incision injury (A) model of the rat femoral artery bleeding (B) the hemostatic process application materials (C) Celox hemostatic effect (D) Zeolite hemostatic effect (E) Gauze hemostatic effect and (F) HM-CHI hemostatic effect. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. D. Owens, J. F. Kragh, J. C. Wenke, J. Macaitis, C. E. Wade, J. B. Holcomb, J. Trauma 2008, 64, 295–299.
- 2M. J. Duggan, A. Y. Mejaddam, J. Beagle, M. A. deMoya, G. C. Velmahosa, H. B. Alam, A. Rago, G. Zugates, R. Busold, T. Freyman, U. Sharma, D. R. King, J. Surg. Res. 2013, 182, 101–107.
- 3D. S. Kauvar, C. E. Wade, Crit. Care 2005, 9, 1–9.
- 4J. G. McManus, B. J. Eastridge, C. E. Wade, J. B. Holcomb, J. Trauma 2007, 62, S14–S14.
- 5D. S. Kauvar, R. Lefering, C. E. Wade, J. Trauma 2006, 60, S3–S9.
- 6H. R. Champion, R. F. Bellamy, C. P. Roberts, A. Leppaniemi, J. Trauma 2003, 54, S13–S19.
- 7S. Flaherty, R. M. Stewart, J. W. Davis, R. M. Stewart, J. Trauma 2003, 54, 70–71.
- 8R. L. Mabry, J. Spec. Oper. Med. 2012, 12, 17–23.
- 9M. Lyon, D. Johnson, R. Gordon, Prehosp. Emerg. Care 2015, 19, 405–408.
- 10G. Giuliani, F. Guerra, D. Coletta, M. La Torre, G. Franco, C. Leonardo, A. Infantino, F. La Torre, Colorectal Dis. 2016, 18, O432–O435.
- 11S. Tehrani, G. Jorneskog, A. Agren, P. E. Lins, H. Wallen, A. Antovic, Thromb. Haemost. 2015, 113, 312–318.
- 12J. Watanabe, S. Ohtori, S. Orita, K. Yamauchi, Y. Eguchi, Y. Aoki, J. Nakamura, M. Suzuki, K. Inage, J. Sato, Y. Shiga, K. Abe, K. Fujimoto, H. Kanamoto, E. Hanaoka, K. Takahashi, Asian Spine J. 2016, 10, 930–934.
- 13M. A. Meledeo, A. C. Rodriguez, C. R. Voelker, J. A. Bynum, A. P. Cap, Blood 2015, 126.
- 14J. B. Holcomb, J. M. McClain, A. E. Pusateri, D. Beall, J. M. Macaitis, R. A. Harris, M. J. MacPhee, J. R. Hess, J. Trauma 2000, 49, 246–250.
- 15B. S. Kheirabadi, J. Sieber, T. Bukhari, K. Rudnicka, L. A. Murcin, D. Tuthill, J. Surg. Res. 2008, 144, 145–150.
- 16M. A. Schreiber, J. Trauma 2008, 64, S26–S27.
- 17F. Esposito, F. F. Angileri, P. Kruse, L. M. Cavallo, D. Solari, V. Esposito, F. Tomasello, P. Cappabianca, PLoS One 2016 , 11.e0151533
- 18S. Roura, C. Galvez-Monton, A. Bayes-Genis, J. Tissue Eng. Regen. Med. 2016, DOI: 10.1002/term.2129.
- 19J. S. Hawksworth, E. A. Elster, D. Fryer, F. Sheppard, V. Morthole, G. Krishnamurthy, T. Tomori, T. S. Brown, D. K. Tadaki, J. Thromb. Haemost.: JTH 2009, 7, 1663–1671.
- 20G. Ersoy, U. Rodoplu, O. Yilmaz, N. Gokmen, A. Dogan, O. Dikme, A. Aydinoglu, O. Orhon, Ulusal travma ve acil cerrahi dergisi = Turk. J. Trauma. Emerg. Surg.: TJTES 2016, 22, 215–223.
- 21A. Crofton, J. Chrisler, S. Hudson, S. Inceoglu, F. Petersen, W. Kirsch, Adv. Ther. 2016, 33, 268–281.
- 22Y. J. Chung, S. Y. An, J. Y. Yeon, W. S. Shim, J. H. Mo, Clin. Exp. Otorhinolaryngol. 2016, 9, 143–149.
- 23S. Abacioglu, K. Aydin, F. Buyukcam, U. Kaya, B. Isik, M. E. Karakilic, Turk. J. Haematol. 2016, 33, 48–52.
- 24L. W. Chan, C. H. Kim, X. Wang, S. H. Pun, N. J. White, T. H. Kim, Acta Biomater. 2016, 31, 178–185.
- 25M. Cziko, E. S. Bogya, R. Barabas, L. Bizo, R. Stefan, Cent. Eur. J. Chem. 2013, 11, 1874–1874.
- 26Z. K. Wang, H. Zhao, L. Fan, J. Lin, P. Y. Zhuang, W. Z. Yuan, Q. L. Hu, J. Z. Sun, B. Z. Tang, Carbohydr. Polym. 2011, 84, 1126–1132.
- 27D. Archana, J. Dutta, P. K. Dutta, Int. J. Biol. Macromol. 2013, 57, 193–203.
- 28Z. K. Wang, Q. L. Hu, Y. X. Wang, Sci China Chem 2011, 54, 380–384.
- 29Z. K. Wang, Q. L. Hu, L. Cai, Chinese J Polym Sci 2010, 28, 801–806.
- 30X. Y. Li, X. Y. Kong, Z. L. Zhang, K. H. Nan, L. L. Li, X. H. Wang, H. Chen, Int. J. Biol. Macromol. 2012, 50, 1299–1305.
- 31S. S. Elkholy, H. A. Salem, M. Eweis, M. Z. Elsabee, Int. J. Biol. Macromol. 2014, 70, 199–207.
- 32X. J. Han, Z. M. Huang, C. Huang, Z. F. Du, H. Wang, J. Wang, C. L. He, Q. S. Wu, Polym. Compos. 2012, 33, 2045–2057.
- 33Z. Gu, H. Xie, C. Huang, L. Li, X. Yu, Int. J. Biol. Macromol. 2013, 58, 121–126.
- 34X. Wang, C. Zheng, Z. M. Wu, D. G. Teng, X. Zhang, Z. Wang, C. X. Li, J Biomed Mater Res B 2009, 88B, 150–161.
- 35I. L. Shih, M. H. Shen, Y. T. Van, Bioresour. Technol. 2006, 97, 1148–1159.
- 36F. F. Xu, Y. C. Wang, S. Sun, A. S. Ho, D. Lee, K. M. Kiang, X. Q. Zhang, W. M. Lui, B. Y. Liu, W. T. Wu, G. K. Leung, Clin. Transl. Sci. 2015, 8, 490–494.
- 37H. Masuhara, T. Fujii, Y. Watanabe, N. Koyama, K. Tokuhiro, Ann. Thorac. Cardiovasc. Surg. 2012, 18, 444–451.
- 38H. B. Alam, Z. Chen, A. Jaskille, R. I. L. C. Querol, E. Koustova, R. Inocencio, R. Conran, A. Seufert, N. Ariaban, K. Toruno, P. Rhee, J. Trauma 2004, 56, 974–983.
- 39B. S. Kheirabadi, E. M. Acheson, R. Deguzman, J. L. Sondeen, K. L. Ryan, A. Delgado, E. J. Dick, Jr., J. B. Holcomb, J. Trauma 2005, 59, 25–34 .discussion 34-25
- 40I. Wedmore, J. G. McManus, A. E. Pusateri, J. B. Holcomb, J. Trauma 2006, 60, 655–658.
- 41X. Chen, Q. Li, X. X. Kan, Y. J. Wang, Y. J. Li, Q. Yang, H. B. Xiao, Y. Chen, X. G. Weng, W. Y. Cai, X. X. Zhu, Oncol. Rep. 2016, 36, 3215–3224.
- 42F. L. Mi, S. S. Shyu, Y. B. Wu, S. T. Lee, J. Y. Shyong, R. N. Huang, Biomaterials 2001, 22, 165–173.
- 43R. Zhang, S. B. Wang, A. Z. Chen, W. G. Chen, Y. G. Liu, W. G. Wu, Y. Q. Kang, S. F. Ye, J. Biomater. Appl. 2015, 30, 351–360.
- 44V. Gryshchuk, N. Galagan, Biotechnol. Res. Int. 2016, 2016 .2959414
- 45M. S. Adhyapak, M. S. Kachole, J. Thromb. Thrombolysis 2016, 41, 644–647.
- 46B. Pereira, J. Brazon, J. Ethnopharmacol. 2015, 160, 6–13.
- 47H. T. Peng, J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94B, 469–485.