Morphology and properties of fibers based on polycarbonate/liquid crystalline polymer blends
Abstract
Polycarbonate-triad-4–co-polybutylene terephthalate liquid crystalline blends were prepared and spun into fibers. It has been shown that fibrillation of the thermotropic liquid crystalline polymer (TLCP) takes place at the given spinning conditions, forming thus “in situ” reinforcement. Continuous fibrils are formed at concentrations between 2.5 and 5% LCP. A degree of miscibility between two phases was observed. The moduli of both as-spun and cold drawn fibers increase almost linearly with increasing concentration of TLCP. Tensile strength was found to decrease and elongation at break to increase with increasing TLCP content. The structure of the cold drawn fibers was not stable with time, causing a relaxation in the observed properties.