A coupled stress and energy failure model for crack initiation in arbitrarily shaped adhesive lap joints
Abstract
In this work, crack initiation in adhesive lap joints of arbitrary joint configuration is studied by means of a finite fracture mechanics approach. The analysis is based on a general stress solution for adhesive joints combined with a coupled stress and energy criterion. The instantaneous formation of a crack of finite size is predicted if a stress and energy criterion are satisfied simultaneously. The closed-form analytical solution of the stress field allows for an efficient evaluation of the crack initiation load and corresponding finite crack length. A comparison to experimental results from literature and to numerical results obtained with a cohesive zone model approach shows a good agreement. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)