Volume 12, Issue 1 pp. 231-232
Section 4
Free Access

Shaking table tests of a model-scale building with 2DOF pendulum mass damper

Krzysztof Majcher

Corresponding Author

Krzysztof Majcher

Faculty of Civil Engineering, Wrocław University of Technology, Poland

phone +48 713 202 934, fax +48 713 203 779Search for more papers by this author
First published: 03 December 2012

Abstract

In this paper, the numerical and experimental studies of a tall building's model with 2DOF pendulum mass damper (PMD) are considered. It is assumed that the model excitation is in the form of horizontal and/or torsional motion of the ground caused by earthquake.

The construction consists of the main system (tall building's model) and a double pendulum mass damper, which is attuned to the first (bending) and the second (torsional) eigenfrequencies of the main structure. The analysis focuses on reduction of structure vibration caused by horizontal or torsional component of ground motions. Therefore, results presented in this work show efficiency of 2DOF PMD for vibration reduction.

The numerical analysis of the problem is performed with using COSMOS/M system (a FEM numerical model is defined), while experimental analysis is carried out on a physical model-scale building with 2DOF PMD. Model consists of twenty five recurrent storeys (height 2.5m) with a PMD located on the highest one. Shaking table device is used to simulate an earthquake excitation in horizontal and torsional component, independently. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.