A three-field stabilized finite element method for fluid-structure interaction: elastic solid and rigid body limit
Corresponding Author
E. Hachem
Center for Material Forming (CEMEF), MINES ParisTech, UMR CNRS, Sophia Antipolis, 7635 France
Correspondence to: E. Hachem, Center for Material Forming (CEMEF), MINES ParisTech, UMR CNRS 7635, Sophia Antipolis, France.
E-mail: [email protected]
Search for more papers by this authorS. Feghali
Center for Material Forming (CEMEF), MINES ParisTech, UMR CNRS, Sophia Antipolis, 7635 France
Search for more papers by this authorT. Coupez
Center for Material Forming (CEMEF), MINES ParisTech, UMR CNRS, Sophia Antipolis, 7635 France
Search for more papers by this authorR. Codina
Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, Barcelona, 08034 Spain
Search for more papers by this authorCorresponding Author
E. Hachem
Center for Material Forming (CEMEF), MINES ParisTech, UMR CNRS, Sophia Antipolis, 7635 France
Correspondence to: E. Hachem, Center for Material Forming (CEMEF), MINES ParisTech, UMR CNRS 7635, Sophia Antipolis, France.
E-mail: [email protected]
Search for more papers by this authorS. Feghali
Center for Material Forming (CEMEF), MINES ParisTech, UMR CNRS, Sophia Antipolis, 7635 France
Search for more papers by this authorT. Coupez
Center for Material Forming (CEMEF), MINES ParisTech, UMR CNRS, Sophia Antipolis, 7635 France
Search for more papers by this authorR. Codina
Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, Barcelona, 08034 Spain
Search for more papers by this authorSummary
We propose a full Eulerian framework for solving fluid-structure interaction (FSI) problems based on a unified formulation in which the FSIs are modelled by introducing an extra stress in the momentum equation. The obtained three-field velocity, pressure and stress system is solved using a stabilized finite element method. The key feature of this unified formulation is the ability to describe different kind of interactions between the fluid and the structure, which can be either elastic or a perfect rigid body, without the need of treating this last case via penalization. The level-set method combined with a dynamic anisotropic mesh adaptation is used to track the fluid-solid interface. Copyright © 2015 John Wiley & Sons, Ltd.
References
- 1Le Tallec P, Mouro J. Fluid structure interaction with large structural displacements. Computer Methods in Applied Mechanics and Engineering 2001; 190(24-25): 3039–3067.
- 2Fernández MA, Moubachir M. A Newton method using exact Jacobians for solving fluid-structure coupling. Computers and Structure 2005; 83(2-3): 127–142.
- 3Gerbeau J-F, Vidrascu M. A quasi-Newton algorithm based on a reduced model for fluid structure interaction problems in blood flow. Mathematical Modelling and Numerical Analysis 2003; 37: 631–647.
- 4Gerbeau J-F, Vidrascu M, Frey P. Fluid structure interaction in blood flows on geometries coming from medical imaging. Computers and Structure 2005; 83(2-3): 155–165.
- 5Causin P, Gerbeau J-F, Nobile F. Added-mass effect in the design of partioned algorithms for fluid-structure problems. Computer Methods in Applied Mechanics and Engineering 2005; 194: 4506–4527.
- 6Rabczuk T, Gracie R, Song J-H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Fluids 2010; 81: 48–71.
- 7Bathe KJ, Zhang H, Wang MH. Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions. Computers and Structures 1995; 56: 193–213.
- 8Bathe KJ, Zhang H. A flow-condition-based interpolation finite element procedure for incompressible fluid flows. Computers and Structures 2002; 80: 1267–1277.
- 9Michler C, van Brummelen E, Hulshoff S, de Borst R. A monolithic approach to fluid-structure interaction. Computers and Fluids 2004; 33: 839–848.
- 10Feghali S, Hachem E, Coupez T. Monolithic stabilized finite element method for rigid body motions in the incompressible Navier-Stokes flow. European Journal of Computational Mechanics 2010; 19(5–7): 547–573.
10.3166/ejcm.19.547-573 Google Scholar
- 11Hachem E, Feghali S, Codina R, Coupez T. Immersed stress method for fluid structure interaction using anisotropic mesh adaptation. International Journal for Numerical Methods in Engineering 2013; 94: 805–825.
- 12Zhang Z-Q, Liu GR, Khoo BC. Immersed smoothed finite element method for two dimensional fluid-structure interaction problems. International Journal for Numerical Methods in Engineering 2012; 90(10): 1097–0207.
- 13Griffith B. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. International Journal for Numerical Methods in Biomedical Engineering 2012; 317–345.
- 14Robinson A, Schroeder C, Fedkiw R. A symmetric positive definite formulation for monolithic fluid structure interaction. Journal of Computational Physics 2010; 230(4): 1547–1566.
- 15Codina R, Houzeaux J, Coppola-Owen H, Baiges J. The fixed-mesh ALE approach for the numerical approximation of flows in moving domains. Journal of Computational Physics 2009; 228: 1591–1611.
- 16Baiges J, Codina R. The Fixed-Mesh ALE approach applied to solid mechanics and fluid-structure interaction problems. International Journal for Numerical Methods in Engineering 2010; 81: 1529–1557.
- 17Baiges J, Codina R, Coppola-Owen H. The Fixed-Mesh ALE approach for the numerical simulation of floating solids. International Journal for Numerical Methods in Fluids 2011; 67: 1004–1023.
- 18He P, Qiao R. A full-Eulerian solid level set method for simulation of fluid-structure interactions. Micro Fluid and Nano Fluid 2011; 11: 557–567.
- 19Cottet G-H, Maitre E, Milcent T. Eulerian formulation and level set models for incompressible fluid-structure interaction. ESAIM: Mathematical Modelling and Numerical Analysis 2008; 42(3): 471–492.
- 20Richter T. A fully Eulerian formulation for fluid-structure-interaction problems. Journal of Computational Physics 2013; 233: 227–240.
- 21Wick T. Fully Eulerian fluid-structure interaction for time dependent problems. Computer Methods in Applied Mechanics and Engineering 2013; 255: 14–26.
- 22Duddu R, Lavier L, Hughes T, Calo V. A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order B-spline finite elements. International Journal for Numerical Methods in Engineering 2012; 89(6): 762–785.
- 23Fedkiw R, Aslam T, Merriman B, Osher S. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics 1999; 152: 457–492.
- 24Okazawa S, Kashiyama K, Kaneko Y. Eulerian formulation using stabilized finite element methods for large deformation solid dynamics. International Journal for Numerical Methods in Engineering 2007; 72: 1544–1559.
- 25van Hoogstraten P, Slaats P, Baaijens F. An Eulerian approach to the finite element modelling of neo-Hookean rubber materials. Applied Scientific Research 1991; 48: 193–210.
10.1007/BF02027967 Google Scholar
- 26Dunne T. An Eulerian approach to fluid-structure interaction and goal-oriented mesh adaptation. International Journal for Numerical Methods in Fluids 2006; 51(9-10): 1017–1039.
- 27Bünisch S, Dunne TF, Rannacher R. Numerics of Fluid-Structure Interaction, vol. 37. Birkhäuser: Basel, 2008.
10.1007/978-3-7643-7806-6_5 Google Scholar
- 28Bost C. Méthodes level-set et pénalisation pour le calcul d'interaction fluide-structure. Ph.D. Thesis, Université Joseph Fourrier- Grenoble I, Grenoble, 2008.
- 29Duddu R, Lavier L, Hughes T, Calo V. A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order B-spline finite elements. International Journal for Numerical Methods in Engineering 2012; 89: 762–785.
- 30Bruchon J, Digonnet H, Coupez T. Using a signed distance function for the simulation of metal forming processes: formulation of the contact condition and mesh adaptation. International Journal for Numerical Methods in Engineering 2009; 78(8): 980–1008.
- 31Codina R, Soto O. A numerical model to track two-fluid interfaces based on a stabilized finite element method and the level set technique. International Journal for Numerical Methods in Fluids 2002; 40: 293–301.
- 32Gruau C, Coupez T. 3D tetrahedral unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Computer Methods in Applied Mechanics and Engineering 2006; 194: 4951–4976.
- 33Coupez T. Génération de maillage et adaptation de maillage par optimisation locale. Revue Européenne des Éléments Finis 2000; 9: 403–423.
- 34van der Pijl S, Segal A, Vuik C, Wesseling P. A mass-conserving level-set method for modelling of multi-phase flows. International Journal for Numerical Methods in Fluids 2005; 47: 339–361.
- 35Hughes TRJ. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods. Computer Methods in Applied Mechanics and Engineering 1995; 127: 387–401.
- 36Badia S, Codina R. Stabilized continuous and discontinuous Galerkin techniques for Darcy flow. Computer Methods in Applied Mechanics and Engineering 2010; 199: 1654–1667.
- 37Codina R. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Computer Methods in Applied Mechanics and Engineering 2002; 191: 4295–4321.
- 38Hachem E, Rivaux B, Kloczko T, Digonnet H, Coupez T. Stabilized finite element method for incompressible flows with high Reynolds number. Journal of Computational Physics 2010; 229(23): 8643–8665.
- 39Codina R. Finite element approximation of the three field formulation of the Stokes problem using arbitrary interpolations. SIAM Journal on Numerical Analysis 2009; 47: 699–718.
- 40Codina R, Principe P, Guasch O, Badia S. Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Computer Methods in Applied Mechanics and Engineering 2007; 196: 2413–2430.
- 41Badia S, Codina R. On a multiscale approach to the transient Stokes problem. Transient subscales and anisotropic space-time discretization. Applied Mathematics and Computation 2009; 207: 415–433.
- 42Cervera M, Chiumenti M, Codina R. Mixed stabilized finite element methods in nonlinear solid mechanics: Part I: formulation. Computer Methods in Applied Mechanics and Engineering 2010; 199: 2559–2570.
- 43Zhao H, Freunda J, Moser R. A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. Journal of Computational Physics 2008; 227(6): 3114–3140.
- 44Xia G, Lin C-L. An unstructured finite volume approach for structural dynamics in response to fluid motions. Computers and Structures 2008; 86: 684–701.
- 45Sourabh V, Martin N, Patankar M. A numerical method for fully resolved simulation (frs) of rigid particle-flow interactions in complex flows. Journal of Computational Physics 2009; 228: 2712–2738.