GABA modulates Drosophila circadian clock neurons via GABAB receptors and decreases in calcium
Yasutaka Hamasaka
Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
Search for more papers by this authorChristian Wegener
Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
Search for more papers by this authorCorresponding Author
Dick R. Nässel
Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
Department of Zoology, Stockholm University, SE-10691 Stockholm, SwedenSearch for more papers by this authorYasutaka Hamasaka
Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
Search for more papers by this authorChristian Wegener
Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
Search for more papers by this authorCorresponding Author
Dick R. Nässel
Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
Department of Zoology, Stockholm University, SE-10691 Stockholm, SwedenSearch for more papers by this authorAbstract
Circadian clocks play vital roles in the control of daily rhythms in physiology and behavior of animals. In Drosophila, analysis of the molecular and behavioral rhythm has shown that the master clock neurons are entrained by sensory inputs and are synchronized with other clock neurons. However, little is known about the neuronal circuits of the Drosophila circadian system and the neurotransmitters that act on the clock neurons. Here, we provide evidence for a new neuronal input pathway to the master clock neurons, s-LNvs, in Drosophila that utilizes GABA as a slow inhibitory neurotransmitter. We monitored intracellular calcium levels in dissociated larval s-LNvs with the calcium-sensitive dye Fura-2. GABA decreased intracellular calcium in the s-LNvs and blocked spontaneous oscillations in calcium levels. The duration of this response was dose-dependent between 1 nM and 100 μM. The response to GABA was blocked by a metabotropic GABAB receptor (GABAB-R) antagonist, CGP54626, but not by an ionotropic receptor antagonist, picrotoxin. The GABAB-R agonist, 3-APMPA, produced a response similar to GABA. An antiserum against one of the Drosophila GABAB-Rs (GABAB-R2) labeled the dendritic regions of the s-LNvs in both adults and larvae, as well as the dissociated s-LNvs. We found that some GABAergic processes terminate at the dendrites of the LNvs, as revealed by GABA immunostaining and a GABA-specific GAL4 line (GAD1-gal4). Our results suggest that the s-LNvs receive slow inhibitory GABAergic inputs that decrease intracellular calcium of these clock neurons and block their calcium cycling. This response is mediated by postsynaptic GABAB receptors. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005
REFERENCES
- Bai D, Sattelle D. 1995. A GABAB receptor on an identified insect motor neurone. J Exp Biol 198: 889–894.
- Berke B, Wu CF. 2002. Regional calcium regulation within cultured Drosophila neurons: effects of altered cAMP metabolism by the learning mutations dunce and rutabaga. J Neurosci 22: 4437–4447.
- Bettler B, Kaupmann K, Mosbacher J, Gassmann M. 2004. Molecular structure and physiological functions of GABAB receptors. Physiol Rev 84: 835–867.
- Biggs KR, Prosser RA. 1998. GABAB receptor stimulation phase-shifts the mammalian circadian clock in vitro. Brain Res 807: 250–254.
- Buchner E, Bader R, Buchner S, Cox J, Emson PC, Flory E, Heizmann CW, Hemm S, Hofbauer A, Oertel WH. 1988. Cell-specific immuno-probes for the brain of normal and mutant Drosophila melanogaster. I. Wildtype visual system. Cell Tissue Res 253: 357–370.
- Cayre M, Buckingham SD, Yagodin S, Sattelle DB. 1999. Cultured insect mushroom body neurons express functional receptors for acetylcholine, GABA, glutamate, octopamine, and dopamine. J Neurophysiol 81: 1–14.
- Chen G, van den Pol AN. 1998. Presynaptic GABAB autoreceptor modulation of P/Q-type calcium channels and GABA release in rat suprachiasmatic nucleus neurons. J Neurosci 18: 1913–1922.
- Colwell CS, Kaufman CM, Menaker M. 1993. Photic induction of Fos in the hamster suprachiasmatic nucleus is inhibited by baclofen but not by diazepam or bicucullin. Neurosci Lett 163: 177–181.
- Dzitoyeva S, Dimitrijevic N, Manev H. 2003. Gamma-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence. Proc Natl Acad Sci USA 100: 5485–5490.
- Estes PS, Ho GLY, Narayanan R, Ramaswami M. 2000. Synaptic localization and restricted diffusion of a Drosophila neuronal synaptobrevin-green fluorescent protein chimera in vivo. J Neurogenet 13: 233–255.
- Featherstone DE, Rushton EM, Hilderbrand-Chae M, Phillips AM, Jackson FR, Broadie K. 2000. Presynaptic glutamic acid decarboxylase is required for induction of the postsynaptic receptor field at a glutamatergic synapse. Neuron 27: 71–84.
- Galvez T, Duthey B, Kniazeff J, Blahos J, Rovelli G, Bettler B, Prezeau L, Pin JP. 2001. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J 20: 2152–2159.
- Gannon RL, Cato MJ, Hart Kelley K, Armstrong DL, Rea MA. 1995. GABAergic modulation of optic nerve-evoked field potentials in the rat suprachiasmatic nucleus. Brain Res 694: 264–270.
- Gillespie CF, Mintz EM, Marvel CL, Huhman KL, Albers HE. 1997. GABAA and GABAB agonists and antagonists alter the phase-shifting effects of light when microinjected into the suprachiasmatic region. Brain Res 759: 181–189.
-
Gillespie CF,
Van der Beek EM,
Mintz EM,
Mickley NC,
Jasnow AM,
Huhman KL,
Albers HE.
1999.
GABAergic regulation of light-induced c-Fos immunoreactivity within the suprachiasmatic nucleus.
J Comp Neurol
411:
683–692.
10.1002/(SICI)1096-9861(19990906)411:4<683::AID-CNE12>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- Gribkoff VK, Pieschl RL, Dudek FE. 2003. GABA receptor-mediated inhibition of neuronal activity in rat SCN in vitro: pharmacology and influence of circadian phase. J Neurophysiol 90: 1438–1448.
- Grynkiewicz G, Poenie M, Tsien RY. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450.
- Harayama N, Shibuya I, Tanaka K, Kabashima N, Ueta Y, Yamashita H. 1998. Inhibition of N- and P/Q-type calcium channels by postsynaptic GABAB receptor activation in rat supraoptic neurones. J Physiol 509: 371–383.
-
Helfrich-Förster C.
1997.
Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster.
J Comp Neurol
380:
335–354.
10.1002/(SICI)1096-9861(19970414)380:3<335::AID-CNE4>3.0.CO;2-3 PubMed Web of Science® Google Scholar
- Helfrich-Förster C. 2003. The neuroarchitecture of the circadian clock in the brain of Drosophila melanogaster. Microsc Res Tech 62: 94–102.
- Helfrich-Förster C, Edwards T, Yasuyama K, Wisotzki B, Schneuwly S, Stanewsky R, Meinertzhagen IA, Hofbauer A. 2002. The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J Neurosci 22: 9255–9266.
- Helfrich-Förster C, Tauber M, Park JH, Muhlig-Versen M, Schneuwly S, Hofbauer A. 2000. Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J Neurosci 20: 3339–3353.
- Helfrich-Förster C, Winter C, Hofbauer A, Hall JC, Stanewsky R. 2001. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30: 249–261.
- Hiesinger PR, Scholz M, Meinertzhagen IA, Fischbach KF, Obermayer K. 2001. Visualization of synaptic markers in the optic neuropils of Drosophila using new constrained deconvolution method J Comp Neurol 429: 277–288.
- Hosie AM, Aronstein K, Sattelle DB, ffrench-Constant RH. 1997. Molecular biology of insect neuronal GABA receptors. Trends Neurosci 20: 578–583.
- Hue B. 1991. Functional assay for GABA receptor subtypes of a cockroach giant interneuron. Arch Insect Biochem Physiol 18: 147–157.
-
Kaneko M,
Hall JC.
2000.
Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections.
J Comp Neurol
422:
66–94.
10.1002/(SICI)1096-9861(20000619)422:1<66::AID-CNE5>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, et al. 1997. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386: 239–246.
- Kaupmann K, Schuler V, Mosbacher J, Bischoff S, Bittiger H, Heid J, Froestl W, Leonhard S, Pfaff T, Karschin A, et al. 1998. Human gamma-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc Natl Acad Sci USA 95: 14991–14996.
- Klarsfeld A, Malpel S, Michard-Vanhée C, Picot M, Chélot E, Rouyer F. 2004. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila. J Neurosci 24: 1468–1477.
- Kolaj M, Boi D, Renaud LP. 2004. GABAB receptor modulation of rapid inhibitory and excitatory neurotransmission from subfornical organ and other afferents to median preoptic nucleus neurons. J Neurophysiol 92: 111–122.
- Kubota H, Katsurabayashi S, Moorhouse AJ, Murakami N, Koga H, Akaike N. 2003. GABAB receptor transduction mechanisms, and cross-talk between protein kinases A and C, in GABAergic terminals synapsing onto neurons of the rat nucleus basalis of Meynert. J Physiol 551: 263–276.
- Küppers B, Sanchez-Soriano N, Letzkus J, Technau GM, Prokop A. 2003. In developing Drosophila neurones the production of gamma-amino butyric acid is tightly regulated downstream of glutamate decarboxylase translation and can be influenced by calcium. J Neurochem 84: 939–951.
- Kwan CY, Putney JW,Jr. 1990. Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr2+ and Ba2+ of agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J Biol Chem 265: 678–684.
- Lee D, Su H, O'Dowd DK. 2003. GABA receptors containing Rdl subunits mediate fast inhibitory synaptic transmission in Drosophila neurons. J Neurosci 23: 4625–4634.
- Lee T, Luo L. 1999. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22: 451–461.
- Levine JD, Funes P, Dowse HB, Hall JC. 2002. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298: 2010–2012.
- Malpel S, Klarsfeld A, Rouyer F. 2002. Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development. Development 129: 1443–1453.
- Malpel S, Klarsfeld A, Rouyer F. 2004. Circadian synchronization and rhythmicity in larval photoperception-defective mutants of Drosophila. J Biol Rhythms 19: 10–21.
- Mann-Metzer P, Yarom Y. 2001. Pre- and postsynaptic inhibition mediated by GABAB receptors in cerebellar inhibitory interneurons. J Neurophysiol 87: 183–190.
- Mazzoni EO, Desplan C, Blau J. 2005. Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response. Neuron 45: 293–300.
- Meyer EP, Matute C, Streit P, Nässel DR. 1986. Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84: 207–216.
- Mezler M, Muller T, Raming K. 2001. Cloning and functional expression of GABA(B) receptors from Drosophila. Eur J Neurosci 13: 477–486.
- Ng M, Roorda RD, Lima SQ, Zemelman BV, Morcillo P, Miesenböck G. 2002. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36: 463–474.
- Nitabach MN, Blau J, Holmes TC. 2002. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109: 485–495.
- Nitabach MN, Sheeba V, Vera DA, Blau J, Holmes TC. 2005. Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock. J Neurobiol 62: 1–13.
- Park JH, Helfrich-Forster C, Lee G, Liu L, Rosbash M, Hall JC. 2000. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci USA 97: 3608–3613.
- Persson MG, Eklund MB, Dircksen H, Muren JE, Nässel DR. 2001. Pigment-dispersing factor in the locust abdominal ganglia may have roles as circulating neurohormone and central neuromodulator. J Neurobiol 48: 19–41.
- Petri B, Homberg U, Loesel R, Stengl M. 2002. Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach Leucophaea maderae. J Exp Biol 205: 1459–1469.
- Python F, Stocker RF. 2002. Immunoreactivity against choline acetyltransferase, gamma-aminobutyric acid, histamine, octopamine, and serotonin in the larval chemosensory system of Drosophila melanogaster. J Comp Neurol 453: 157–167.
- Ralph MR, Menaker M. 1989. GABA regulation of circadian responses to light. I. Involvement of GABAA-benzodiazepine and GABAB receptors. J Neurosci 9: 2858–2865.
- Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH. 1999. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99: 791–802.
- Rieger D, Stanewsky R, Helfrich-Förster C. 2003. Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J Biol Rhythms 18: 377–391.
- Sachse S, Galizia CG. 2002. Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87: 1106–1117.
- Schilling WP, Rajan L, Strobl-Jager E. 1989. Characterization of the bradykinin-stimulated calcium influx pathway of cultured vascular endothelial cells. J Biol Chem 264: 12838–12848.
- Sinakevitch I, Strausfeld NJ. 2004. Chemical neuroanatomy of the fly's movement detection pathway. J Comp Neurol 468: 6–23.
- Sinakevitch-Péan I, Geffard M, Plotnikova SI. 2001. Localization of glutamate in the nervous system of the fly Drosophila melanogaster: immunocytochemical observations. J Evol Biochem Physiol 37: 64–68.
- Stanewsky R. 2003. Genetic analysis of the circadian system in Drosophila melanogaster and mammals. J Neurobiol 54: 111–147.
- Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC. 1998. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95: 681–692.
- Veleri S, Brandes C, Helfrich-Förster C, Hall JC, Stanewsky R. 2003. A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain. Curr Biol 13: 1758–1767.
- Wegener C, Hamasaka Y, Nässel DR. 2004. Acetylcholine increases intracellular Ca2+ via nicotinic receptors in cultured PDF-containing clock neurons of Drosophila. J Neurophysiol 91: 912–923.
- Williams JA, Sehgal A. 2001. Molecular components of the circadian system in Drosophila. Annu Rev Physiol 63: 729–755.
- Yasuyama K, Kitamoto T, Salvaterra PM. 1995. Localization of choline acetyltransferase-expressing neurons in the larval visual system of Drosophila melanogaster. Cell Tissue Res 282: 193–202.
- Yoshii T, Funada Y, Ibuki-Ishibashi T, Matsumoto A, Tanimura T, Tomioka K. 2004. Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. J Insect Physiol 50: 479–488.