
References
- 1
Bäbler, F.,
“Über die Zerlegung Regulärer Streckenkomplexe Ungerader Ordnung,”
Comment. Math. Helvet.,
10,
1938,
pp. 275–287.
10.1007/BF01214296 Google Scholar
- 2 Berge, C., “Two Theorems in Graph Theory,” Proc. of Nat. Acad. Sci., USA, 43, 1957, pp. 842–844.
- 3 Berge, C., Graphes et Hypergraphes, Dunod, Paris, 1970.
- 4
Chartrand, G.,
D. Geller and
S. Hedetniemi,
“Graphs with Forbidden Subgraphs,”
J. Combinat. Theory,
10B,
1971,
pp. 12–41.
10.1016/0095-8956(71)90065-7 Google Scholar
- 5
Erdös, P. and
T. Gallai,
“On Maximal Paths and Circuits of Graphs,”
Acta. Math. Acad. Sci. Hungar.,
10,
1959,
pp. 337–356.
10.1007/BF02024498 Google Scholar
- 6
Forcade, R.,
“Smallest Maximal Matchings in the Graph of the d-Dimensional Cube,”
J. Combinat. Theory (B),
14,
1973,
pp. 153–157.
10.1016/0095-8956(73)90059-2 Google Scholar
- 7 Gallai, T., “Maximale Systeme Unabhängiger Kanten,” Publ. Math. Inst. Hungar. Acad. Sci., 9, 1965, pp. 401–413.
- 8 Grünbaum, B., Convex Polytopes, Interscience, New York, 1967.
- 9 Grünbam, B., “Polytopes, Graphs, and Complexes,” Bull. Amer. Math. Soc., 76, 1970, pp. 1131–1201.
- 10 Grünbaum, B., “Acyclic Colorings of Planar Graphs,” Israel J. Math., 14, 1973, pp. 390–408.
- 11
Harary, F.,
Graph Theory,
Addison-Wesley,
Reading,
1969.
10.21236/AD0705364 Google Scholar
- 12 Klee, V., “The Number of Vertices of a Convex Polytope,” Canad. J. Math., 16, 1964, pp. 701–720.
- 13 Klee, V., “A Property of d-Polyhedral Graphs,” J. Math. Mech., 13, 1964, pp. 1039–1042.
- 14 Kotzig, A., “Contribution to the Theory of Eulerian Polyhedra,” (Slovak. Summary in Russian) Mat. -Fyz. Casopis Slovensk. Akad. Vied., 5, 1955, pp. 101–113.
- 15 McMullen, P., “The Maximum Numbers of Faces of a Convex Polytope,” Mathematika, 17, 1970, pp. 179–184.
- 16 Norman, R. Z. and M. O. Rabin, “An Algorithm for a Minimum Cover of a Graph,” Proc. of Amer. Math. Soc., 10, 1959, pp. 315–319.
- 17 Ore, O., “Theory of Graphs,” Amer. Math. Soc., Providence, 1962.
- 18
Petersen, J.,
“Die Theorie der Regulären Graphen,”
Acta. Math.,
15,
1891,
pp. 193–220.
10.1007/BF02392606 Google Scholar
- 19 Sachs, H., Einfuhrung in die Theorie der Endlichen Graphen, Teil I., Teubner, Leipzig, 1970.
- 20 Steinitz, E., “Polyeder und Raumeinteilungen,” Enzykl. Math. Wiss., Vol. 3 (Geometrie), Part 3AB12, 1922, pp. 1–139.
- 21 Weinstein, J. H., “On the Number of Disjoint Edges in a Graph,” Canad. J. Math., 15, 1963, pp. 106–111.