Advances in MicroRNAs in Pathophysiology of Duchenne Muscular Dystrophy
Jose Emilio Galeazzi Aguilar
Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
Posgrado en Ciencias Biomédiicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
Contribution: Investigation, Visualization, Writing - review & editing
Search for more papers by this authorTomas Almeida-Becerril
Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
Contribution: Conceptualization, Methodology, Writing - original draft
Search for more papers by this authorCorresponding Author
Maricela Rodríguez-Cruz
Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
Correspondence:
Maricela Rodríguez-Cruz ([email protected])
Contribution: Conceptualization, Supervision, Writing - review & editing
Search for more papers by this authorJose Emilio Galeazzi Aguilar
Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
Posgrado en Ciencias Biomédiicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
Contribution: Investigation, Visualization, Writing - review & editing
Search for more papers by this authorTomas Almeida-Becerril
Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
Contribution: Conceptualization, Methodology, Writing - original draft
Search for more papers by this authorCorresponding Author
Maricela Rodríguez-Cruz
Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
Correspondence:
Maricela Rodríguez-Cruz ([email protected])
Contribution: Conceptualization, Supervision, Writing - review & editing
Search for more papers by this authorFunding: This study was supported by a CONAHCYT fellowship (CVU 1170308).
Jose Emilio Galeazzi Aguilar and Tomas Almeida-Becerril equal contributions to this work.
ABSTRACT
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle disorder caused by pathogenic variants in the DMD gene, which encodes dystrophin, a protein essential for maintaining muscle integrity. Reduced or absent dystrophin expression results in sarcolemmal instability, chronic inflammation, oxidative stress, impaired muscle regeneration, and fibrosis. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally and significantly influence multiple pathological processes in DMD. Specific miRNAs, including miR-146a, miR-155, miR-378, and miR-711, modulate inflammation primarily through the NF-κB signaling pathway. Others, such as miR-21, miR-31, miR-128, miR-144, and miR-379, regulate oxidative stress responses via the NRF2 antioxidant pathway. Muscle-specific miRNAs (myomiRs), notably miR-1, miR-133a/b, miR-206, miR-486, and miR-499, are critical for muscle regeneration, and their dysregulation impairs satellite cell function and muscle repair. Additionally, miRNAs such as miR-21, miR-29a/c, and miR-199a-5p play significant roles in fibrosis development. The dysregulation of these miRNAs contributes to the complex pathophysiology of DMD, underscoring their potential as biomarkers for disease progression and therapeutic response. Understanding the specific roles of these miRNAs provides valuable insights into the molecular mechanisms underlying DMD and may facilitate the identification of novel therapeutic targets.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The authors have nothing to report.
References
- 1N. Salari, B. Fatahi, E. Valipour, et al., “Global Prevalence of Duchenne and Becker Muscular Dystrophy: A Systematic Review and Meta-Analysis,” Journal of Orthopaedic Surgery 17, no. 1 (2022): 96.
10.1186/s13018-022-02996-8 Google Scholar
- 2M. Chang, Y. Cai, Z. Gao, et al., “Duchenne Muscular Dystrophy: Pathogenesis and Promising Therapies,” Journal of Neurology 270, no. 8 (2023): 3733–3749.
- 3V. Mirouse, “Evolution and Developmental Functions of the Dystrophin-Associated Protein Complex: Beyond the Idea of a Muscle-Specific Cell Adhesion Complex,” Frontiers in Cell and Development Biology 11 (2023): 1182524.
- 4S. M. Szabo, R. M. Salhany, A. Deighton, M. Harwood, J. Mah, and K. L. Gooch, “The Clinical Course of Duchenne Muscular Dystrophy in the Corticosteroid Treatment Era: A Systematic Literature Review,” Orphanet Journal of Rare Diseases 16 (2021): 237.
- 5J. G. Tidball, S. S. Welc, and M. Wehling-Henricks, “Immunobiology of Inherited Muscular Dystrophies,” Comprehensive Physiology 8, no. 4 (2018): 1313–1356.
- 6N. Deconinck and B. Dan, “Pathophysiology of Duchenne Muscular Dystrophy: Current Hypotheses,” Pediatric Neurology 36, no. 1 (2007): 1–7.
- 7K. J. Bockhold, J. David Rosenblatt, and T. A. Partridge, “Aging Normal and Dystrophic Mouse Muscle: Analysis of Myogenicity in Cultures of Living Single Fibers,” Muscle & Nerve 21, no. 2 (1998): 173–183.
10.1002/(SICI)1097-4598(199802)21:2<173::AID-MUS4>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 8I. Bronisz-Budzyńska, K. Chwalenia, O. Mucha, et al., “miR-146a Deficiency Does Not Aggravate Muscular Dystrophy in Mdx Mice,” Skeletal Muscle 9 (2019): 1–17.
- 9P. J. Koopmans, A. Ismaeel, K. Goljanek-Whysall, and K. A. Murach, “The Roles of miRNAs in Adult Skeletal Muscle Satellite Cells,” Free Radical Biology & Medicine 209 (2023): 228–238.
- 10H.-J. Wu, M. Hao, S. K. Yeo, and J. L. Guan, “FAK Signaling in Cancer-Associated Fibroblasts Promotes Breast Cancer Cell Migration and Metastasis by Exosomal miRNAs-Mediated Intercellular Communication,” Oncogene 39, no. 12 (2020): 2539–2549.
- 11Q. Meng, J. Zhang, J. Zhong, D. Zeng, and D. Lan, “Novel miRNA Biomarkers for Patients With Duchenne Muscular Dystrophy,” Frontiers in Neurology 13 (2022): 921785.
- 12A. M. L. Coenen-Stass, M. J. A. Wood, and T. C. Roberts, “Biomarker Potential of Extracellular miRNAs in Duchenne Muscular Dystrophy,” Trends in Molecular Medicine 23, no. 11 (2017): 989–1001.
- 13K. Zabłocki and D. C. Górecki, “The Role of P2X7 Purinoceptors in the Pathogenesis and Treatment of Muscular Dystrophies,” International Journal of Molecular Sciences 24 (2023): 9434.
- 14K. Mojumdar, C. Giordano, C. Lemaire, et al., “Divergent Impact of Toll-Like Receptor 2 Deficiency on Repair Mechanisms in Healthy Muscle Versus Duchenne Muscular Dystrophy: TLR2 in Healthy Versus Dystrophic Muscle,” Journal of Pathology 239 (2016): 10–22.
- 15C. A. Coles, L. Gordon, L. C. Hunt, et al., “Expression Profiling in Exercised Mdx Suggests a Role for Extracellular Proteins in the Dystrophic Muscle Immune Response,” Human Molecular Genetics 19, no. 3 (2020): 353–368.
- 16A. S. Rosenberg, M. Puig, K. Nagaraju, et al., “Immune-Mediated Pathology in Duchenne Muscular Dystrophy,” Science Translational Medicine 7, no. 299 (2015): 299rv4.
- 17A. A. Fiorillo, C. B. Tully, J. M. Damsker, K. Nagaraju, E. P. Hoffman, and C. R. Heier, “Muscle miRNAome Shows Suppression of Chronic Inflammatory miRNAs With Both Prednisone and Vamorolone,” Physiological Genomics 50, no. 9 (2018): 735–745.
- 18M. Nie, J. Liu, Q. Yang, et al., “MicroRNA-155 Facilitates Skeletal Muscle Regeneration by Balancing Pro- and Anti-Inflammatory Macrophages,” Cell Death & Disease 7, no. 6 (2016): e2261.
- 19P. Podkalicka, O. Mucha, I. Bronisz-Budzyńska, et al., “Lack of miR-378 Attenuates Muscular Dystrophy in Mdx Mice,” JCI Insight 5, no. 11 (2020): e135576.
- 20R. Boursereau, M. Abou-Samra, S. Lecompte, L. Noel, and S. M. Brichard, “Downregulation of the NLRP3 Inflammasome by Adiponectin Rescues Duchenne Muscular Dystrophy,” BMC Biology 16 (2018): 1–17.
- 21S. Maciotta, M. Meregalli, L. Cassinelli, et al., “Hmgb3 Is Regulated by MicroRNA-206 During Muscle Regeneration,” PLoS One 7 (2012): e43464.
- 22S. Greco, M. De Simone, C. Colussi, et al., “Common Micro-RNA Signature in Skeletal Muscle Damage and Regeneration Induced by Duchenne Muscular Dystrophy and Acute Ischemia,” FASEB Journal 23, no. 10 (2009): 3335–3346.
- 23D. Israeli, J. Poupiot, F. Amor, et al., “Circulating miRNAs Are Generic and Versatile Therapeutic Monitoring Biomarkers in Muscular Dystrophies,” Scientific Reports 6, no. 1 (2016): 28097.
- 24M. Sanson, A. Vu Hong, E. Massourides, et al., “miR-379 Links Glucocorticoid Treatment With Mitochondrial Response in Duchenne Muscular Dystrophy,” Scientific Reports 10, no. 1 (2020): 9139.
- 25Y. Matsuzaka, J. Tanihata, H. Komaki, et al., “Characterization and Functional Analysis of Extracellular Vesicles and Muscle-Abundant miRNAs (miR-1, miR-133a, and miR-206) in C2C12 Myocytes and mdx Mice,” PLoS One 11, no. 12 (2016): e0167811.
- 26M. A. Lopez, Y. Si, X. Hu, et al., “Smad8 Is Increased in Duchenne Muscular Dystrophy and Suppresses miR-1, miR-133a, and miR-133b,” International Journal of Molecular Sciences 23, no. 14 (2022): 7515.
- 27T. Taetzsch, D. Shapiro, R. Eldosougi, T. Myers, R. E. Settlage, and G. Valdez, “The microRNA miR-133b Functions to Slow Duchenne Muscular Dystrophy Pathogenesis,” Journal of Physiology 599, no. 1 (2021): 171–192.
- 28R. M. Hightower, A. Samani, A. L. Reid, et al., “MiR-486 Is an Epigenetic Modulator of Duchenne Muscular Dystrophy Pathologies,” (2021), BioRxiv: 06.14.448387.
- 29N. O. Mousa, A. Abdellatif, N. Fahmy, S. Zada, H. el-Fawal, and A. Osman, “Circulating microRNAs in Duchenne Muscular Dystrophy,” Clinical Neurology and Neurosurgery 189 (2020): 105634.
- 30N. O. Mousa, A. A. Sayed, N. Fahmy, et al., “miRNome Profiling in Duchenne Muscular Dystrophy; Identification of Asymptomatic and Manifesting Female Carriers,” Bioscience Reports 41, no. 9 (2021): BSR20211325.
- 31I. Eisenberg, A. Eran, I. Nishino, et al., “Distinctive Patterns of microRNA Expression in Primary Muscular Disorders,” Proceedings of the National Academy of Sciences 104, no. 43 (2007): 17016–17021.
- 32N. Vignie, F. Amor, P. Fogel, et al., “Distinctive Serum miRNA Profile in Mouse Models of Striated Muscular Pathologies,” PLoS One 8, no. 2 (2013).
- 33T. Almeida-Becerril, M. Rodríguez-Cruz, S. Y. Hernández-Cruz, et al., “Natural History of Circulating miRNAs in Duchenne Disease: Association With Muscle Injury and Metabolic Parameters,” Acta Neurologica Scandinavica 146, no. 5 (2022): 512–524.
- 34T. E. Callis, K. Pandya, H. Y. Seok, et al., “MicroRNA-208a Is a Regulator of Cardiac Hypertrophy and Conduction in Mice,” Journal of Clinical Investigation 119, no. 9 (2009): 2772–2786.
- 35N. Arrighi, C. Moratal, G. Savary, et al., “The fibromiR miR-214-3p Is Upregulated in Duchenne Muscular Dystrophy and Promotes Differentiation of Human Fibro-Adipogenic Muscle Progenitors,” Cells 10, no. 7 (2021): 1832.
- 36Y. Fujio, K. Kunisada, H. Hirota, K. Yamauchi-Takihara, and T. Kishimoto, “Signals Through gp130 Upregulate Bcl-x Gene Expression via STAT1-Binding Cis-Element in Cardiac Myocytes,” Journal of Clinical Investigation 99, no. 12 (1997): 2898–2905.
- 37K. C. Wollert and K. R. Chien, “Cardiotrophin-1 and the Role of gp130-Dependent Signaling Pathways in Cardiac Growth and Development,” Journal of Molecular Medicine 75 (1997): 492–501.
- 38F. Wu, N. J. Guo, H. Tian, et al., “Peripheral Blood microRNAs Distinguish Active Ulcerative Colitis and Crohn's Disease,” Inflammatory Bowel Diseases 17, no. 1 (2011): 241–250.
- 39S. Becker, A. Florian, A. Patrascu, et al., “Identification of Cardiomyopathy Associated Circulating miRNA Biomarkers in Patients With Muscular Dystrophy Using a Complementary Cardiovascular Magnetic Resonance and Plasma Profiling Approach,” Journal of Cardiovascular Magnetic Resonance 18, no. 1 (2016): 25.
- 40J. R. Terrill, H. G. Radley-Crabb, T. Iwasaki, F. A. Lemckert, P. G. Arthur, and M. D. Grounds, “Oxidative Stress and Pathology in Muscular Dystrophies: Focus on Protein Thiol Oxidation and Dysferlinopathies,” FEBS Journal 280, no. 17 (2013): 4149–4164.
- 41M. Kozakowska, K. Pietraszek-Gremplewicz, A. Jozkowicz, and J. Dulak, “The Role of Oxidative Stress in Skeletal Muscle Injury and Regeneration: Focus on Antioxidant Enzymes,” Journal of Muscle Research and Cell Motility 36 (2015): 377–393.
- 42S. Petrillo, L. Pelosi, F. Piemonte, et al., “Oxidative Stress in Duchenne Muscular Dystrophy: Focus on the NRF2 Redox Pathway,” Human Molecular Genetics 26, no. 14 (2017): 2781–2790.
- 43J. Banerjee, S. Khanna, and A. Bhattacharya, “MicroRNA Regulation of Oxidative Stress,” Oxidative Medicine and Cellular Longevity 2017 (2017): 1–3.
- 44F. He, X. Ru, and T. Wen, “NRF2, a Transcription Factor for Stress Response and Beyond,” International Journal of Molecular Sciences 21, no. 13 (2020): 4777.
- 45N. P. Whitehead, C. Pham, O. L. Gervasio, and D. G. Allen, “N-Acetylcysteine Ameliorates Skeletal Muscle Pathophysiology Inmdxmice,” Journal of Physiology 586, no. 7 (2008): 2003–2014.
- 46E. Ignatieva, N. Smolina, A. Kostareva, and R. Dmitrieva, “Skeletal Muscle Mitochondria Dysfunction in Genetic Neuromuscular Disorders With Cardiac Phenotype,” International Journal of Molecular Sciences 22, no. 14 (2021): 7349.
- 47X. Zhang, W.-L. Ng, P. Wang, et al., “MicroRNA-21 Modulates the Levels of Reactive Oxygen Species by Targeting SOD3 and TNF α,” Cancer Research 72, no. 18 (2012): 4707–4713.
- 48R. Caggiano, F. Cattaneo, O. Moltedo, et al., “MiR-128 Is Implicated in Stress Responses by Targeting MAFG in Skeletal Muscle Cells,” Oxidative Medicine and Cellular Longevity 2017, no. 1 (2017): 1–13.
10.1155/2017/9308310 Google Scholar
- 49C. Sangokoya, M. J. Telen, and J.-T. Chi, “MicroRNA miR-144 Modulates Oxidative Stress Tolerance and Associates With Anemia Severity in Sickle Cell Disease,” Blood 116, no. 20 (2010): 4338–4348.
- 50M. Gartz, M. Beatka, M. J. Prom, J. L. Strande, and M. W. Lawlor, “Cardiomyocyte-Produced miR-339-5p Mediates Pathology in Duchenne Muscular Dystrophy Cardiomyopathy,” Human Molecular Genetics 30, no. 23 (2021): 2347–2361.
- 51T. Mei, Y. Liu, J. Wang, and Y. Zhang, “miR‑340‑5p: A Potential Direct Regulator of Nrf2 Expression in the Post‑Exercise Skeletal Muscle of Mice,” Molecular Medicine Reports 19, no. 2 (2019): 1340–1348.
- 52H. Yamamoto, K. Morino, Y. Nishio, et al., “MicroRNA-494 Regulates Mitochondrial Biogenesis in Skeletal Muscle Through Mitochondrial Transcription Factor A and Forkhead Box j3,” American Journal of Physiology. Endocrinology and Metabolism 303, no. 12 (2012): E1419–E1427.
- 53R. K. Przanowska, E. Sobierajska, Z. Su, et al., “miR-206family Is Important for Mitochondrial and Muscle Function, but Not Essential for Myogenesis In Vitro,” FASEB Journal 34, no. 6 (2020): 7687–7702.
- 54A. P. Russell, S. Lamon, H. Boon, et al., “Regulation of miRNAs in Human Skeletal Muscle Following Acute Endurance Exercise and Short-Term Endurance Training,” Journal of Physiology 591, no. 18 (2013): 4637–4653.
- 55S. Zanotti, S. Gibertini, M. Curcio, et al., “Opposing Roles of miR-21 and miR-29 in the Progression of Fibrosis in Duchenne Muscular Dystrophy,” Biochimica et Biophysica Acta, Molecular Basis of Disease 1852, no. 7 (2015): 1451–1464.
- 56E. Aksu-Menges, Y. Z. Akkaya-Ulum, D. Dayangac-Erden, et al., “The Common miRNA Signatures Associated With Mitochondrial Dysfunction in Different Muscular Dystrophies,” American Journal of Pathology 190, no. 10 (2020): 2136–2145.
- 57I. Bronisz-Budzyńska, M. Kozakowska, K. Pietraszek-Gremplewicz, et al., “NRF2 Regulates Viability, Proliferation, Resistance to Oxidative Stress, and Differentiation of Murine Myoblasts and Muscle Satellite Cells,” Cells 11, no. 20 (2022): 3321.
- 58M. E. Pownall, M. K. Gustafsson, and C. P. Emerson, “Myogenic Regulatory Factors and the Specification of Muscle Progenitors in Vertebrate Embryos,” Annual Review of Cell and Developmental Biology 18, no. 1 (2002): 747–783.
- 59J. Von Maltzahn, A. E. Jones, R. J. Parks, et al., “Pax7 Is Critical for the Normal Function of Satellite Cells in Adult Skeletal Muscle,” Proceedings of the National Academy of Sciences 110, no. 41 (2013): 16474–16479.
- 60G. Dobrowolny, A. Barbiera, G. Sica, and B. M. Scicchitano, “Age-Related Alterations at Neuromuscular Junction: Role of Oxidative Stress and Epigenetic Modifications,” Cells 10, no. 6 (2021): 1307.
- 61L. Yedigaryan and M. Sampaolesi, “Therapeutic Implications of miRNAs for Muscle-Wasting Conditions,” Cells 10, no. 11 (2021): 3035.
- 62J.-F. Chen, E. M. Mandel, J. M. Thomson, et al., “The Role of microRNA-1 and microRNA-133 in Skeletal Muscle Proliferation and Differentiation,” Nature Genetics 38, no. 2 (2006): 228–233.
- 63J.-F. Chen, Y. Tao, J. Li, et al., “microRNA-1 and microRNA-206 Regulate Skeletal Muscle Satellite Cell Proliferation and Differentiation by Repressing Pax7,” Journal of Cell Biology 190, no. 5 (2010): 867–879.
- 64H. Mizuno, A. Nakamura, Y. Aoki, et al., “Identification of Muscle-Specific microRNAs in Serum of Muscular Dystrophy Animal Models: Promising Novel Blood-Based Markers for Muscular Dystrophy,” PLoS One 6, no. 3 (2011): e18388.
- 65K. Yuasa, Y. Hagiwara, M. Ando, A. Nakamura, S.’. Takeda, and T. Hijikata, “MicroRNA-206 Is Highly Expressed in Newly Formed Muscle Fibers: Implications Regarding Potential for Muscle Regeneration and Maturation in Muscular Dystrophy,” Cell Structure and Function 33, no. 2 (2008): 163–169.
- 66G. Ma, Y. Wang, Y. Li, et al., “MiR-206, a Key Modulator of Skeletal Muscle Development and Disease,” International Journal of Biological Sciences 11, no. 3 (2015): 345–352.
- 67A. Łoboda and J. Dulak, “Nuclear Factor Erythroid 2-Related Factor 2 and Its Targets in Skeletal Muscle Repair and Regeneration,” Antioxidants & Redox Signaling 8, no. 7–9 (2023): 619–642.
- 68C. Mytidou, A. Koutsoulidou, A. Katsioloudi, et al., “Muscle-Derived Exosomes Encapsulate myomiRs and Are Involved in Local Skeletal Muscle Tissue Communication,” FASEB Journal 35, no. 2 (2021): e21279.
- 69A. Koutsoulidou, D. Koutalianos, K. Georgiou, et al., “Serum miRNAs as Biomarkers for the Rare Types of Muscular Dystrophy,” Neuromuscular Disorders 32, no. 4 (2022): 332–346.
- 70M. Sandonà, S. Consalvi, L. Tucciarone, et al., “HDAC Inhibitors Tune miRNAs in Extracellular Vesicles of Dystrophic Muscle-Resident Mesenchymal Cells,” EMBO Reports 21, no. 9 (2020): e50863.
- 71Y. Yu, Y. Su, G. Wang, et al., “Reciprocal Communication Between FAPs and Muscle Cells via Distinct Extracellular Vesicle miRNAs in Muscle Regeneration,” Proceedings of the National Academy of Sciences 121, no. 11 (2024): e2316544121.
- 72P. K. Rao, Y. Toyama, H. R. Chiang, et al., “Loss of Cardiac microRNA-Mediated Regulation Leads to Dilated Cardiomyopathy and Heart Failure,” Circulation Research 105, no. 6 (2009): 585–594.
- 73A. Care, D. Catalucci, F. Felicetti, et al., “MicroRNA-133 Controls Cardiac Hypertrophy,” Nature Medicine 13, no. 5 (2007): 613–618.
- 74M. S. Alexander, J. C. Casar, N. Motohashi, et al., “MicroRNA-486–Dependent Modulation of DOCK3/PTEN/AKT Signaling Pathways Improves Muscular Dystrophy–Associated Symptoms,” Journal of Clinical Investigation 124, no. 6 (2014): 2651–2667.
- 75D. Cacchiarelli, T. Incitti, J. Martone, et al., “miR-31 Modulates Dystrophin Expression: New Implications for Duchenne Muscular Dystrophy Therapy,” EMBO Reports 12, no. 2 (2011): 136–141.
- 76D. Cacchiarelli, I. Legnini, J. Martone, et al., “miRNAs as Serum Biomarkers for Duchenne Muscular Dystrophy,” EMBO Molecular Medicine 3, no. 5 (2011): 258–265.
- 77S. Trifunov, D. Natera-de Benito, J. M. Exposito Escudero, et al., “Longitudinal Study of Three microRNAs in Duchenne Muscular Dystrophy and Becker Muscular Dystrophy,” Frontiers in Neurology 11 (2020): 304.
- 78I. T. Zaharieva, M. Calissano, M. Scoto, et al., “Dystromirs as Serum Biomarkers for Monitoring the Disease Severity in Duchenne Muscular Dystrophy,” PLoS One 8, no. 11 (2013): e80263.
- 79J. Liu, X. Liang, D. Zhou, et al., “Coupling of Mitochondrial Function and Skeletal Muscle Fiber Type by a miR-499/Fnip1/AMPK Circuit,” EMBO Molecular Medicine 8, no. 10 (2016): 1212–1228.
- 80X. Li, L. Zhao, D. Zhang, et al., “Circulating Muscle-Specific miRNAs in Duchenne Muscular Dystrophy Patients,” Molecular Therapy 3 (2014): e177.
- 81A. Samani, R. M. Hightower, A. L. Reid, et al., “miR-486 Is Essential for Muscle Function and Suppresses a Dystrophic Transcriptome,” Life Science Alliance 5, no. 9 (2022): e202101215.
- 82P. J. Vignos, G. E. Spencer, and K. C. Archibald, “Management of Progressive Muscular Dystrophy of Childhood,” JAMA 184, no. 2 (1963): 89–96.
- 83R. Palisano, P. Rosenbaum, S. Walter, et al., “Development and Reliability of a System to Classify Gross Motor Function in Children With Cerebral Palsy,” Developmental Medicine and Child Neurology 39, no. 4 (1997): 214–223.
- 84M. H. Brooke, R. C. Griggs, J. R. Mendell, G. M. Fenichel, J. B. Shumate, and R. J. Pellegrino, “Clinical Trial in Duchenne Dystrophy. I. The Design of the Protocol,” Muscle and Nerve 4, no. 3 (1981): 186–197.
- 85A. Compston, “Aids to the Investigation of Peripheral Nerve Injuries. Medical Research Council: Nerve Injuries Research Committee,” Brain 133, no. 10 (2010): 2838–2844.
- 86J. S. Duffield, M. Lupher, V. J. Thannickal, and T. A. Wynn, “Host Responses in Tissue Repair and Fibrosis,” Annual Review of Pathology: Mechanisms of Disease 8, no. 1 (2013): 241–276.
- 87M.-L. Bochaton-Piallat, G. Gabbiani, and B. Hinz, “The Myofibroblast in Wound Healing and Fibrosis: Answered and Unanswered Questions,” Research 5 (2016): 752.
- 88T. C. Roberts, K. E. M. Blomberg, G. McClorey, et al., “Expression Analysis in Multiple Muscle Groups and Serum Reveals Complexity in the microRNA Transcriptome of the Mdx Mouse With Implications for Therapy,” Molecular Therapy—Nucleic Acids 1 (2012): e39.
- 89V. Marini, F. Marino, F. Aliberti, et al., “Long-Term Culture of Patient-Derived Cardiac Organoids Recapitulated Duchenne Muscular Dystrophy Cardiomyopathy and Disease Progression,” Frontiers in Cell and Development Biology 10 (2022): 878311.
- 90P. Zhu, H. Li, A. Zhang, et al., “MicroRNAs Sequencing of Plasma Exosomes Derived From Patients With Atrial Fibrillation: miR-124-3p Promotes Cardiac Fibroblast Activation and Proliferation by Regulating AXIN1,” Journal of Physiology and Biochemistry 78 (2022): 85–98.
- 91S. Zanotti, S. Gibertini, F. Blasevich, et al., “Exosomes and Exosomal miRNAs From Muscle-Derived Fibroblasts Promote Skeletal Muscle Fibrosis,” Matrix Biology 74 (2018): 77–100.
- 92D. Duan, N. Goemans, S. Takeda, et al., “Duchenne Muscular Dystrophy,” Nature Reviews Disease Primers 7, no. 1 (2021): 13.
- 93L. Bello, H. Gordish-Dressman, L. P. Morgenroth, et al., “Prednisone/Prednisolone and Deflazacort Regimens in the CINRG Duchenne Natural History Study,” Neurology 85, no. 12 (2015): 1048–1055.
- 94M. S. Ibrahim, O. A. Abdelwahab, B. Elawf, et al., “Meta‑Analysis of the Efficacy and Safety of Vamorolone in Duchenne Muscular Dystrophy,” Neurological Sciences 6 (2025): 2249–2262.
10.1007/s10072-024-07939-1 Google Scholar
Online Version of Record before inclusion in an issue