Exercise training improves the soleus muscle morphology in experimental diabetic nerve regeneration
Tais Malysz PhD
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciâncias Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brasil
Search for more papers by this authorJocemar Ilha PhD
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciâncias Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brasil
Search for more papers by this authorPatrícia Severo do Nascimento MS
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciâncias Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brasil
Search for more papers by this authorMaria Cristina Faccioni-Heuser PhD
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciâncias Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brasil
Search for more papers by this authorKátia De Angelis PhD
Laboratório de Movimento Humano, Universidade de São Judas Tadeu, São Paulo, SP, Brasil
Search for more papers by this authorBeatriz D'agord Schaan MD, PhD
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul e Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia Porto Alegre, RS, Brasil
Search for more papers by this authorCorresponding Author
Matilde Achaval MD, PhD
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciâncias Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brasil
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, BrasilSearch for more papers by this authorTais Malysz PhD
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciâncias Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brasil
Search for more papers by this authorJocemar Ilha PhD
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciâncias Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brasil
Search for more papers by this authorPatrícia Severo do Nascimento MS
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciâncias Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brasil
Search for more papers by this authorMaria Cristina Faccioni-Heuser PhD
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciâncias Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brasil
Search for more papers by this authorKátia De Angelis PhD
Laboratório de Movimento Humano, Universidade de São Judas Tadeu, São Paulo, SP, Brasil
Search for more papers by this authorBeatriz D'agord Schaan MD, PhD
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul e Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia Porto Alegre, RS, Brasil
Search for more papers by this authorCorresponding Author
Matilde Achaval MD, PhD
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciâncias Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brasil
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, BrasilSearch for more papers by this authorAbstract
Introduction:
In this study we evaluate the effects of exercise training (10 weeks) on soleus muscle morphology in diabetic nerve regeneration after injury by sciatic nerve crush.
Methods:
Wistar rats were assigned to either a non-diabetic (n = 6), non-diabetic injured (n = 6), diabetic (n = 6), diabetic injured (DC; n = 9), or trained diabetic injured group (TDC; n = 7). Muscle transverse sections were used for morphometric and ultrastructural analyses.
Results:
Higher fiber density and smaller average myofiber area were observed in the DC and TDC (P < 0.05) groups compared with the other groups. This atrophic pattern was partially reversed in TDC. There was misalignment of the sarcomeres and structural alterations in the blood vessels, sarcolemma, nucleus, and mitochondria in the DC animals. The myofibers and blood vessels had a similar normal appearance in the TDC group. In addition, polyribosomes, rough sarcoplasmic reticulum, developed Golgi apparatus, and new myofibrils were observed.
Conclusions:
Sciatic nerve injury was found to promote soleus muscle atrophy and ultrastructural alterations in experimental diabetic nerve regeneration, which were partially reversed by exercise training. Muscle Nerve, 2011
REFERENCES
- 1 Dyck PJ, Giannini C. Pathologic alterations in the diabetic neuropathies of humans: a review. J Neuropathol Exp Neurol 1996; 55: 1181–1193.
- 2 Huang BK, Monu JU, Doumanian J. Diabetic myopathy: MRI patterns and current trends. AJR Am J Roentgenol 2010; 195: 198–204.
- 3 Sima AA, Sugimoto K. Experimental diabetic neuropathy: an update. Diabetologia 1999; 42: 773–788.
- 4 Klueber KM, Feczko JD. Ultrastructural histochemical, and morphometric analysis of skeletal muscles in a murine model of type I diabetes. Anat Rec 1994; 239: 18–34.
- 5 Chao TT, Lanuzz CD, Armstrong RB, Albright JT, Anapole SE. Ultrastructural alterations in skeletal muscle fibers of streptozotocin-diabetic rats. Cell Tissue Res 1976; 168: 239–246.
- 6 Bestetti G, Zemp C, Probst D, Rossi GL. Neuropathy and myopathy in the diaphragm of rats after 12 months of streptozotocin-induced diabetes mellitus. A light-, electron-microscopic, and morphometric study. Acta Neuropathol 1981; 55: 11–20.
- 7 Fahim MA, Hasan MY, Alshuaib WB. Early morphological remodeling of neuromuscular junction in a murine model of diabetes. J Appl Physiol 2000; 89: 2235–2240.
- 8 Sexton WL, Poole DC, Mathieu-Costello O. Microcirculatory structure–function relationships in skeletal muscle of diabetic rats. Am J Physiol 1994; 266: H1502–H1511.
- 9 De Angelis KLD, Oliveira AR, Dall'ago P, Peixoto LRA, Gadonski G, Fernandes TG, et al. Effects of exercise training in autonomic and myocardial dysfunction in streptozotocin-diabetic rats. Braz J Med Biol Res 2000; 33: 635–641.
- 10 Souza SB, Flues K, Paulini J, Mostarda C, Rodrigues B, Souza LE, et al. Role of exercise training in cardiovascular autonomic dysfunction and mortality in diabetic ovariectomized rats. Hypertension 2007; 30: 786–791.
- 11 Harthmann AD, De Angelis K, Parente Costa L, Senador D, Schaan BD, Krieger EM, et al. Exercise training improves arterial baro- and chemoreflex in control and diabetic rats. Auton Neurosc 2007; 133: 115–120.
- 12 Richardson JK, Sandman D, Vela S. A focused exercise regimen improves clinical measures of balance in patients with peripheral neuropathy. Arch Phys Med Rehabil 2001; 82: 205–209.
- 13 Balducci S, Iacobellis G, Parisi L, Di Biase N, Calandrielo E, Leonetti F, et al. Exercise training can modify the natural history of diabetic peripheral neuropathy. J Diabetes Complic 2006; 20: 216–223.
- 14 Selagzi H, Buyukakilli B, Cimen B, Yilmaz N, Erdogan S. Protective and therapeutic effects of swimming exercise training on diabetic peripheral neuropathy of streptozotocin-induced diabetic rats. J Endocrinol Invest 2008; 31: 971–978.
- 15 Yasuda H, Terada M, Maeda K, Kogawa S, Sanada M, Haneda M, et al. Diabetic neuropathy and nerve regeneration. Prog Neurobiol 2003; 69: 229–285.
- 16 Sakakima H, Kawamata S, Kai S, Ozawa J, Matuura N. Effects of short-term denervation and subsequent reinnervation on motor endplate and the soleus muscle in the rat. Arch Histol Cytol 2000; 63: 495–506.
- 17 Ilha J, Araujo RT, Malysz T, Hermel EES, Rigon P, Xavier LL, et al. Endurance and resistance exercise training programs elicit specific effects on sciatic nerve regeneration after experimental traumatic lesion in rats. Neurorehabil Neural Repair 2008; 22: 355–366.
- 18 Rodrigues B, Figueroa DM, Mostarda CT, Heeren MV, Irigoyen MC, De Angelis K. Maximal exercise test is a useful method for physical capacity and oxygen consumption determination in streptozotocin-diabetic rats. Cardiovasc Diabetol 2007; 6: 38.
- 19 Marcuzzo S, Ferreira Dutra M, Stigger F, Severo Do Nascimento P, Ilha J, Kalil-Gaspar PI, et al. Beneficial effects of treadmill training in a cerebral palsy-like rodent model: walking pattern and soleus quantitative histology. Brain Res 2008; 30: 129–140.
- 20 Gauthier GF. Some ultrastructural and cytochemical features of fiber populations in the soleus muscle. Anat Rec 1974; 180: 551–564.
- 21 Fawcett DW. Ultrastructure: the cell its organelles and inclusions. Philadelphia: Saunders; 1966.
- 22 Schaan BD, Dall'ago P, Maeda CY, Ferlin E, Fernandes TG, Schmid H, et al. Relationship between cardiovascular dysfunction and hyperglycemia in streptozotocin-induced diabetes in rats. Braz J Med Biol Res 2004; 37: 1895–1902.
- 23 Do Nascimento PS, Malysz T, Ilha J, Araujo RT, Hermel EES, Kalil-Gaspar PI et al. Treadmill training increases the size of A cells from the L5 dorsal root ganglia in diabetic rats. Histol Histopathol 2010; 25: 719–732.
- 24 Sanchez OA, Snow LM, Lowe DA, Serfass RC, Thompson LV. Effects of endurance exercise-training on single-fiber contractile properties of insulin-treated streptozotocin-induced diabetic rats. J Appl Physiol 2005; 99: 472–478.
- 25
Hollingsworth DR,
Moore TR.
Postprandial walking exercise in pregnant insulin-dependent (type I) diabetic women: reduction of plasma lipid levels but absence of a significant effect on glycemic control.
Am J Obstet Gynecol
1987;
57:
1359–1363.
10.1016/S0002-9378(87)80224-7 Google Scholar
- 26
Maier F,
Bornemann A.
Comparison of the muscle fiber diameter and satellite cell frequency in human muscle biopsies.
Muscle Nerve
1999;
22:
578–583.
10.1002/(SICI)1097-4598(199905)22:5<578::AID-MUS5>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 27 Ashley Z, Sutherland H, Lanmuller H, Russold MF, Unger E, Bijak M, et al. Atrophy, but not necrosis, in rabbit skeletal muscle denervated for periods up to one year. Am J Physiol 2007; 292: C440–C451.
- 28 Ericson U, Ansved T, Borg K. Charcot–Marie–Tooth disease—muscle biopsy findings in relation to neurophysiology. Neuromuscul Disord 1998; 8: 175–181.
- 29 Hegarty PVJ, Rosholt MN. Effects of streptozotocin-induced diabetes on the number and diameter of fibres in different skeletal muscles of the rat. J Anat 1981; 133: 205–211.
- 30 Johnston AP, Campbell JE, Found JG, Riddell MC, Hawke TJ. Streptozotocin induces G2 arrest in skeletal muscle myoblasts and impairs muscle growth in vivo. Am J Physiol Cell Physiol 2007; 292: C1033–C1040.
- 31 Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 2007; 82: 163–201.
- 32 Malysz T, Ilha J, Do Nascimento PS, De Angelis K, Schaan BD, Achaval M. Beneficial effects of treadmill training in experimental diabetic nerve regeneration. Clinics (Sao Paulo) 2010; 65: 1329–1337.
- 33 Kennedy JM, Zochodne DW. The regenerative deficit of peripheral nerves in experimental diabetes: its extent timing and possible mechanisms. Brain 2000; 123: 2118–2129.
- 34 Bradley JL, Thomas PK, King RH, Muddle JR, Ward JD, Tesfaye S, et al. Myelinated nerve fibre regeneration in diabetic sensory polyneuropathy: correlation with type of diabetes. Acta Neuropathol 1995; 90: 403–410.
- 35 Terada M, Yasuda H, Kikkawa R. Delayed Wallerian degeneration and increased neurofilament phosphorylation in sciatic nerve of rats with streptozotocin-induced diabetes. J Neurol Sci 1998; 155: 23–30.
- 36 Ekström PAR, Kanje M, Skottner A. Nerve regeneration and serum levels of insulin-like growth factor-1 in rats with streptozotocin-induced insulin deficiency. Brain Res 1989; 496: 141–148.
- 37 Terada M, Yasuda H, Kikkawa R, Shigeta Y. Tolrestat improves nerve regeneration after crush injury in streptozotocin-induced diabetic rats. Metabolism 1996; 45: 1189–1195.
- 38 Kalhovde JM, Jerkovic R, Sefland I, Cordonnier C, Calabria E, Schiaffino S, et al. “Fast” and “slow” muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells. J Physiol 2005; 562: 847–857.
- 39
Tesfaye S.
Neuropathy in diabetes.
Medicine
2010;
38:
12:
649–655.
10.1016/j.mpmed.2010.08.012 Google Scholar
- 40 Dellon L. Diabetic neuropathy: medical and surgical approaches. Clin Podiatr Med Surg 2007; 24: 425–448.
- 41 Nukada H, McMorran PD, Baba M, Ogasawara S, Yagihashi S. Increased susceptibility to ischemia and macrophage activation in STZ-diabetic rat nerve. Brain Res 2011; 1373: 172–182.
- 42 Boyle PJ. Diabetes mellitus and macrovascular disease: mechanisms and mediators. Am J Med 2007; 120( suppl): S12–S17.
- 43 Panes J, Kurose I, Rodriguez-Vaca D, Anderson DC, Miyasaka M, Tso P, et al. Diabetes exacerbates inflammatory responses to ischemia–reperfusion. Circulation 1996; 93: 161–167.
- 44 Robinson MS, Shannon S. Rehabilitation of peripheral nerve injuries. Military Trauma Rehabil 2002; 13: 109–135.
- 45 Schluter JM, Fitts RH. Shortening velocity and ATPase activity of rat skeletal muscle fibers: effects of endurance exercise training. Am J Physiol 1994; 266: C1699–C1673.
- 46 Van Meeteren NL, Brakkee JH, Hamers FP, Helders PJ, Gispen WH. Exercise training improves functional recovery and motor nerve conduction velocity after sciatic nerve crush lesion in the rat. Arch Phys Med Rehabil 1997; 78: 70–77.
- 47 Zhou Z, Cornelius CP, Eichner M, Bornemann A. Reinnervation-induced alterations in rat skeletal muscle. Neurobiol Dis 2006; 23: 595–602.
- 48 Irintchev A, Draguhn A, Wernig A. Reinnervation and recovery of mouse soleus muscle after long-term denervation. Neuroscience 1990; 39: 231–243.
- 49 Karlson J, Saltin B. Lactate, ATP, and CP in working muscles during exhaustive exercise in man. Am J Physiol 1970; 29: 598–602.
- 50 Highman B, Altland PD. Effects of exercise and training on serum enzyme and tissue changes in rats. Am J Physiol 1963; 205: 162–166.
- 51 Jacobsson S, Kjellmer I. Accumulation of fluid in exercising skeletal muscle. Acta Physiol Scand 1964; 60: 286–295.
- 52 Armstrong RB. Mechanisms of exercise-induced delayed muscular soreness: a brief review. Med Sci Sports Exerc 1984; 16: 529–538.
- 53 Warhol MJ, Siegel AJ, Evans WJ, Silverman LM. Skeletal muscle injury and repair in marathon runners after competition. Am J Pathol 1985; 118: 331–339.
- 54 Ozaki K, Matsuura T, Narama J. Histochemical and morphometrical analysis of skeletal muscle in spontaneous diabetic WBN/Kob rat. Acta Neuropathol 2001; 102: 364–370.
- 55 Pellegrino C, Franzini C. An electron microscope study of denervation atrophy in red and white skeletal muscle fibers. J Cell Biol 1963; 17: 327–349.
- 56 Armstrong RB, Warren GL, Warren JA. Mechanisms of exercise-induced muscle fibre injury. Sports Med 1991; 12: 184–207.
- 57 Morgan DL, Allen DG. Early events in stretch-induced muscle damage. J Appl Physiol 1999; 87: 2007–2015.
- 58 Frostick SP. The physiological and metabolic consequences of muscle denervation. Int Angiol 1995; 14: 278–287.
- 59 Mastaglia FL, Hudgson P. Ultrastructural studies of diseased muscle. In: J Walton, editor. Disorders of voluntary muscle, 4th ed. New York: Churchill Livingstone; 1981. p 296–356.
- 60 Mair WGP, Tomé FMS. Atlas of the ultrastructure of diseased human muscle. Edinburgh: Churchill Livingstone; 1972.
- 61 Engel AG, Angelini C. Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 1973; 179: 899–902.
- 62 Neville HE. Ultrastructural changes in muscle disease. In: V Dubowitz, M Brooke, editors. Muscle biopsy. London: Saunders; 1973. p 383–444.
- 63 Zacks SI, Pegues JJ, Elliott FA. Interstitial muscle capillaries in patients with diabetes mellitus: a light and electron microscope study. Metabolism 1962; 2: 381.
- 64 Mastaglia FL, Walton JN. An ultrastructural study of skeletal muscle in polymyositis. J Neurol Sci 1971; 12: 473.
- 65 Jerusalem F, Engel AG, Gomez MR. Duchenne dystrophy. I. Morphometric study of the muscle microvasculature. Brain 1974; 97: 115.
- 66 Gabbay KH, Merola LO, Field RA. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science 1966; 151: 209–210.
- 67 Pain VM, Garlick PJ. Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. J Biol Chem 1974; 249: 4510–4514.
- 68 Kjeldsen K, Braendgaard H, Sidenius P, Larsen JS, Norgaard A. Diabetes decreases NaK pump concentration in skeletal muscles, heart ventricular muscle and peripheral nerves of rat. Diabetes 1987; 31: 194–202.
- 69 Love A, Cotter MA, Cameron NE. Nerve function and regeneration in diabetic and galactosaemic rats: antioxidant and metal chelator effects. Eur J Pharmacol 1996; 314: 33–39.
- 70 Merzouk S, Hichami A, Madani S, Merzouk H, Berrouiguet AY, Prost J, et al. Antioxidant status and levels of different vitamins determined by high performance liquid chromatography in diabetic subjects with multiple complications. Gen Physiol Biophys 2003; 22: 15–27.
- 71 Cullen MJ, Appleyard ST, Bindoff L. Morphologic aspects of muscle breakdown and lysosomal activation. Ann NY Acad Sci 1978; 317: 440.
- 72 Tipton KD, Wolfe RR. Exercise-induced changes in protein metabolism. Acta Physiol Scand 1998; 162: 377–387.
- 73 Dela F, Handberg A, Mikinest KJ, Vinten J, Galbo H. Glut 4 and insulin receptor binding and kinase activity in trained human muscle. J Physiol 1993; 469: 615–624.
- 74 Gute D, Fraga C, Laughlin MH, Amann JF. Regional changes in capillary supply in skeletal muscle of high-intensity endurance-trained rats. J Appl Physiol 1996; 81: 619–626.
- 75 Atalay M, Oksala NK, Laaksonen DE, Khanna S, Nakao C, Lappalainen J, et al. Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol 2004; 97: 605–611.
- 76 Funakoshi H, Belluardo N, Arenas E, Yamamoto Y, Casabona A, Persson H, et al. Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science 1995; 268: 1495–1499.
- 77 Gómez-Pinilla F, Ying Z, Opazo P, Roy RR, Edgerton VR. Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. Eur J Neurosci 2001; 13: 1078–1084.
- 78 Martin CL, Albers J, Herman WH, Cleary P, Waberski B, Greene DA, et al. DCCT/EDIC Research Group: Neuropathy among the Diabetes Control and Complications Trial cohort 8 years after trial completion. Diabetes Care 2006; 29: 340–344.
- 79 Ziegler D. Treatment of diabetic neuropathy and neuropathic pain. How far have we come? Diabetes Care 2008; 31( suppl): S255–S261
- 80 American Diabetes Association. Clinical practice recommendations. Diabetes Care 2011; 34( suppl 1): XXX–XXX.