3D Cartesian MRI with compressed sensing and variable view sharing using complementary poisson-disc sampling
Corresponding Author
Evan Levine
Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA.
Correspondence to: Evan Levine, 1201 Welch Road, Stanford, CA 94305. E-mail: [email protected].Search for more papers by this authorBruce Daniel
Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA.
Search for more papers by this authorShreyas Vasanawala
Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA.
Search for more papers by this authorBrian Hargreaves
Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA.
Search for more papers by this authorManojkumar Saranathan
Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA.
Search for more papers by this authorCorresponding Author
Evan Levine
Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA.
Correspondence to: Evan Levine, 1201 Welch Road, Stanford, CA 94305. E-mail: [email protected].Search for more papers by this authorBruce Daniel
Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA.
Search for more papers by this authorShreyas Vasanawala
Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA.
Search for more papers by this authorBrian Hargreaves
Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA.
Search for more papers by this authorManojkumar Saranathan
Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA.
Search for more papers by this authorAbstract
Purpose
To enable robust, high spatio-temporal-resolution three-dimensional Cartesian MRI using a scheme incorporating a novel variable density random k-space sampling trajectory allowing flexible and retrospective selection of the temporal footprint with compressed sensing (CS).
Methods
A complementary Poisson-disc k-space sampling trajectory was designed to allow view sharing and varying combinations of reduced view sharing with CS from the same prospective acquisition. These schemes were used for two-point Dixon-based dynamic contrast-enhanced MRI (DCE-MRI) of the breast and abdomen. Results were validated in vivo with a novel approach using variable-flip-angle data, which was retrospectively accelerated using the same methods but offered a ground truth.
Results
In breast DCE-MRI, the temporal footprint could be reduced 2.3-fold retrospectively without introducing noticeable artifacts, improving depiction of rapidly enhancing lesions. Further, experiments with variable-flip-angle data showed that reducing view sharing improved accuracy in reconstruction and T1 mapping. In abdominal MRI, 2.3-fold and 3.6-fold reductions in temporal footprint allowed reduced motion artifacts.
Conclusion
The complementary-Poisson-disc k-space sampling trajectory allowed a retrospective spatiotemporal resolution tradeoff using CS and view sharing, imparting robustness to motion and contrast enhancement. The technique was also validated using a novel approach of fully acquired variable-flip-angle acquisition. Magn Reson Med 77:1774–1785, 2017. © 2016 International Society for Magnetic Resonance in Medicine
REFERENCES
- 1Van Vaals JJ, Brummer ME, Thomas Dixon W, Tuithof HH, Engels H, Nelson RC, Gerety BM, Chezmar JL, Den Boer JA. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 1993; 3: 671–675.
- 2Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 1996; 36: 345–351.
- 3Madhuranthakam AJ, Hu HH, Barger A V, Haider CR, Kruger DG, Glockner JF, Huston J, Riederer SJ. Undersampled elliptical centric view-order for improved spatial resolution in contrast-enhanced MR angiography. Magn Reson Med 2006; 55: 50–58.
- 4Song T, Laine AF, Chen Q, Rusinek H, Bokacheva L, Lim RP, Laub G, Kroeker R, Lee VS. Optimal k-space sampling for dynamic contrast-enhanced MRI with an application to MR renography. Magn Reson Med 2009; 61: 1242–1248.
- 5Saranathan M, Rettmann DW, Hargreaves BA, Clarke SE, Vasanawala SS. DIfferential subsampling with cartesian ordering (DISCO): a high spatio-temporal resolution dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. J Magn Reson Imaging 2012; 35: 1484–1492.
- 6Song HK, Dougherty L. k-Space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med 2000; 44: 825–832.
- 7Saranathan M, Rettmann DW, Hargreaves BA, Lipson JA, Daniel BL. Variable spatiotemporal resolution three-dimensional dixon sequence for rapid dynamic contrast-enhanced breast MRI. J Magn Reson Imaging 2014; 40: 1392–1399.
- 8Le Y, Kipfer H, Majidi S, Holz S, Dale B, Geppert C, Kroeker R, Lin C. Application of time-resolved angiography with stochastic trajectories (TWIST)-Dixon in dynamic contrast-enhanced (DCE) breast MRI. J Magn Reson Imaging 2013; 38: 1033–1042.
- 9Herrmann K-H, Baltzer PA, Dietzel M, Krumbein I, Geppert C, Kaiser WA, Reichenbach JR. Resolving arterial phase and temporal enhancement characteristics in DCE MRM at high spatial resolution with TWIST acquisition. J Magn Reson Imaging 2011; 34: 973–982.
- 10Le Y, Kroeker R, Kipfer HD, Lin C. Development and evaluation of TWIST Dixon for dynamic contrast-enhanced (DCE) MRI with improved acquisition efficiency and fat suppression. J Magn Reson Imaging 2012; 36: 483–491.
- 11Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182–1195.
- 12Seeger M, Nickisch H, Pohmann R, Schölkopf B. Optimization of k-space trajectories for compressed sensing by Bayesian experimental design. Magn Reson Med 2010; 63: 116–126.
- 13Ravishankar S, Bresler Y. Adaptive sampling design for compressed sensing MRI. 2011 Annu Int Conf IEEE Eng Med Biol Soc 2011: 3751–3755.
- 14Liu D-D, Liang D, Zhang N, Liu X, Zhang Y-T. Undersampling trajectory design for compressed sensing based dynamic contrast-enhanced magnetic resonance imaging. J Electron Imaging 2015; 24: 013017.
- 15Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 2010; 64: 457–471.
- 16Athalye V, Lustig M, Uecker M. Parallel magnetic resonance imaging as approximation in a reproducing kernel Hilbert space. Inverse Probl 2015; 31: 45008.
- 17Vasanawala SS, Murphy MJ, Lai P, Keutzer K, Alley MT, Pauly JM, Lustig M. Practical parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating body MRI of pediatric patients. Proc IEEE Int Symp Biomed Imaging 2011; 2011: 1039–1043.
- 18Rapacchi S, Natsuaki Y, Plotnik A, Gabriel S, Laub G, Finn JP, Hu P. Reducing view-sharing using compressed sensing in time-resolved contrast-enhanced magnetic resonance angiography. Magn Reson Med 2014; 74: 474–481.
10.1002/mrm.25414 Google Scholar
- 19Rapacchi S, Han F, Natsuaki Y, Kroeker R, Plotnik A, Lehrman E, Sayre J, Laub G, Finn JP, Hu P. High spatial and temporal resolution dynamic contrast-enhanced magnetic resonance angiography using compressed sensing with magnitude image subtraction. Magn Reson Med 2014; 71: 1771–1783.
- 20Mistretta CA, Wieben O, Velikina J, Block W, Perry J, Wu Y, Johnson K. Highly constrained backprojection for time-resolved MRI. Magn Reson Med 2006; 55: 30–40.
- 21Dixon WT. Simple proton spectroscopic imaging. Radiology 1984; 153: 189–194.
- 22Ma J. Breath-hold water and fat imaging using a dual-echo two-point dixon technique with an efficient and robust phase-correction algorithm. Magn Reson Med 2004; 52: 415–419.
- 23Reeder SB, Markl M, Yu H, Hellinger JC, Herfkens RJ, Pelc NJ. Cardiac CINE imaging with IDEAL water-fat separation and steady-state free precession. J Magn Reson Imaging 2005; 22: 44–52.
- 24Smith DS, Welch EB, Li X, Arlinghaus LR, Loveless ME, Koyama T, Gore JC, Yankeelov TE. Quantitative effects of using compressed sensing in dynamic contrast enhanced MRI. Phys Med Biol 2011; 56: 4933–4946.
- 25Chen L, Schabel MC, DiBella EVR. Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints. Mag Reson Imag 2010; 28: 637–645.
- 26Adluru G, Tasdizen T, Schabel MC, DiBella EVR. Reconstruction of 3D dynamic contrast-enhanced magnetic resonance imaging using nonlocal means. JMRI 2010; 32: 1217–1227.
- 27Wu H, Block WF, Turski PA, Mistretta CA, Rusinak DJ, Wu Y, Johnson KM. Noncontrast dynamic 3D intracranial MR angiography using pseudo-continuous arterial spin labeling (PCASL) and accelerated 3D radial acquisition. J Magn Reson Imaging 2014; 39: 1320–1326.
- 28Usman M, Prieto C, Schaeffter T, Batchetlor PG. k-t group sparse: a method for accelerating dynamic MRI. Magn Reson Med 2011; 66: 1163–1176.
- 29Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Kim WY. k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. J Magn Reson Imaging 2009; 62: 706–716.
- 30Wang H, Miao Y, Zhou K, et al. Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory. Med Phys 2010; 37: 4971.
- 31Gdaniec N, Eggers H, Börnert P, Doneva M, Mertins A. Robust abdominal imaging with incomplete breath-holds. Magn Reson Med 2014; 71: 1733–1742.
- 32Talmor D. Well-spaced points for numerical methods. PhD Thesis. University of Minnesota; 1997.
- 33Lagae A, Dutré P. A comparison of methods for generating poisson disk distributions. Comput Graph Forum 2008; 27: 114–129.
- 34Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014; 71: 990–1001.
- 35Uecker M, Ong F, Tamir J, Bahri D, Virtue P, Cheng J, Zhang T, Lustig M. Berkeley advanced reconstruction toolbox. In Proceedings of the 23rd Annual Meeting of ISMRM, Toronto, Canada, 2015. p. 23:2486.
- 36Smith DS, Li X, Gambrell J V, Arlinghaus LR, Quarles CC, Yankeelov TE, Welch EB. Robustness of quantitative compressive sensing MRI: the effect of random undersampling patterns on derived parameters for DCE- and DSC-MRI. IEEE Trans Med Imaging 2012; 31: 504–511.
- 37Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imag 1999; 10: 223–232.
10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 38Walker-Samuel S, Leach MO, Collins DJ. Evaluation of response to treatment using DCE-MRI: the relationship between initial area under the gadolinium curve (IAUGC) and quantitative pharmacokinetic analysis. Phys Med Biol 2006; 51: 3593–3602.
- 39Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the golden ratio for time-resolved MRI. Med Imaging IEEE Trans 2007; 26: 68–76.
- 40Song HK, Dougherty L. Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution. Magn Reson Med 2004; 52: 815–824.
- 41Zhang T, Cheng JY, Potnick AG, Barth RA, Alley MT, Uecker M, Lustig M, Pauly JM, Vasanawala SS. Fast pediatric 3D free-breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution. J Magn Reson Imaging 2015; 41: 460–473.
- 42Otazo R, Candès E, Sodickson DK. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 2015; 73: 1125–1136.
- 43Lebel RM, Jones J, Ferre J-C, Law M, Nayak KS. Highly accelerated dynamic contrast enhanced imaging. Magn Reson Med 2014; 71: 635–644.
- 44Veliknia J, Morrison C, Bancroft L, Strigel R, Holmes J, Wang K, Samsonov AA, Korosec FR. An application of compressed sensing for improved temporal fidelity in DCE breast MRI. In: ISMRM Workshop on MRI in the Management of Breast Disease, San Francisco, California, USA. 2015.
- 45Velikina JV, Alexander AL, Samsonov A. Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension. Magn Reson Med 2013; 70: 1263–1273.
- 46Zhang T, Pauly JM, Levesque IR. Accelerating parameter mapping with a locally low rank constraint. Magn Reson Med 2014; 661: 655–661.