High-efficiency hybrid continuous mode power amplifier with input and output harmonic engineering
Corresponding Author
Ce Shen
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
Correspondence
Ce Shen, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Email: [email protected]
Search for more papers by this authorSongbai He
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorZehua Xiao
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorJun Peng
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorFei You
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorCorresponding Author
Ce Shen
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
Correspondence
Ce Shen, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Email: [email protected]
Search for more papers by this authorSongbai He
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorZehua Xiao
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorJun Peng
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorFei You
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorFunding information: China Postdoctoral Science Foundation, Grant/Award Number: 2019M663472; National Key Research and Development Program of China, Grant/Award Number: 2018YFB1802004; National Natural Science Foundation of China, Grant/Award Numbers: 61871075, 62001082
Abstract
This paper intensely studies the impact of the input nonlinearity caused by the transistor's feedback on the hybrid continuous class-F power amplifier. The research extends the influence of input harmonics on class-F power amplifiers to a more general form. Through waveform engineering, the impact of feedback is analyzed. By analyzing the change in cutoff angle caused by input nonlinearity, the change of the drain voltage and current waveforms of the hybrid continuous class-F power amplifier can be obtained. The new drain voltage and current waveforms obtained from the analysis redefine the design space of source impedance and load impedance for the hybrid continuous class-F power amplifier. By designing the corresponding input and output matching network, the second harmonic is suppressed, and finally, the hybrid continuous class-F power amplifier achieves a high-efficiency state. The research reveals that input harmonics also play an essential role in the design process of power amplifiers. A comparative experiment is designed to verify the theory. Simultaneously, a 1.6–2.8 GHz broadband hybrid continuous class-F power amplifier is designed using this theory, with a saturation efficiency of more than 61.2% and a saturation power of more than 40.4 dBm.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
REFERENCES
- 1Cripps SC. RF Power Amplifiers for Wireless Communications. 2nd ed. Artech House; 2006.
- 2 Spectrum I. 5G bytes: small cells explained; 2017.
- 3 Semiconductors N. RF 5G Infrastructure; 2018. https://www.nxp.com/products/rf/rfpower/rf-cellular-infrastructure:RFCELLULARINFRASTRUCTURE.
- 4You F, He S, Tang X, Cao T. Performance study of a class-E power AmplifierWith tuned series-parallel resonance network. IEEE Trans. Microw. Theory Techn. 2008; 56(10): 2190-2200. doi:10.1109/TMTT.2008.2003530
- 5Grebennikov A. High-efficiency class-E power amplifier with shunt capacitance and shunt filter. IEEE Trans Circuits Syst I. 2016; 63(1): 12-22. doi:10.1109/TCSI.2015.2512698
10.1109/TCSI.2015.2512698 Google Scholar
- 6Sharma T, Aflaki P, Helaoui M, Ghannouchi FM. Broadband GaN class-E power amplifier for load Modulated delta sigma and 5G transmitter applications. IEEE Access. 2018; 6: 4709-4719. doi:10.1109/ACCESS.2017.2789248
- 7Moon J, Jee S, Kim J, Kim J, Kim B. Behaviors of class-F and class- F*1 amplifiers. IEEE Trans Microw Theory Tech. 2012; 60(6): 1937-1951. doi:10.1109/TMTT.2012.2190749
- 8Martinez-Rodriguez FJ, Roblin P, Popovic Z, Martinez-Lopez JI. Optimal definition of class F for realistic transistor models. IEEE Trans Microw Theory Tech. 2017; 65(10): 3585-3595. doi:10.1109/TMTT.2017.2743714
- 9Ekhteraei M, Hayati M, Shama F. High-efficiency low voltage inverse class-F power amplifier design based on harmonic control network analysis. IEEE Trans Circuits Syst I. 2020; 67(3): 806-814. doi:10.1109/TCSI.2019.2952932
10.1109/TCSI.2019.2952932 Google Scholar
- 10Ingruber B, Pritzl W, Smely D, Wachutka M, Magerl G. High-efficiency harmonic-control amplifier. IEEE Trans Microw Theory Tech. 1998; 46(6): 857-862. doi:10.1109/22.681213
- 11Sivakumar S, Eroglu A. Analysis of class-E based RF power amplifiers using harmonic modeling. IEEE Trans Circuits Syst I. 2010; 57(1): 299-311. doi:10.1109/TCSI.2009.2016169
10.1109/TCSI.2009.2016169 Google Scholar
- 12Enomoto J, Ishikawa R, Honjo K. Second harmonic treatment technique for bandwidth enhancement of GaN HEMT amplifier with harmonic reactive terminations. IEEE Trans Microw Theory Tech. 2017; 65(12): 4947-4952. doi:10.1109/TMTT.2017.2704931
- 13Chen K, Peroulis D. Design of broadband highly efficient harmonic-tuned power amplifier using In-band continuous class- F*1_F mode transferring. IEEE Trans Microw Theory Tech. 2012; 60(12): 4107-4116. doi:10.1109/TMTT.2012.2221142
- 14Wang J, He S, You F, Shi W, Peng J, Li C. Codesign of high-efficiency power amplifier and ring-resonator filter based on a series of continuous modes and even–odd- mode analysis. IEEE Trans Microw Theory Tech. 2018; 66(6): 2867-2878. doi:10.1109/TMTT.2018.2819650
- 15Naah G, Giofrè R. Empowering the bandwidth of continuous-mode symmetrical Doherty amplifiers by leveraging on fuzzy logic techniques. IEEE Trans Microw Theory Tech. 2020; 68(7): 3134-3147. doi:10.1109/TMTT.2019.2958127
- 16Dai Z, He S, You F, Peng J, Chen P, Dong L. A new distributed parameter broadband matching method for power amplifier via real frequency technique. IEEE Trans Microw Theory Tech. 2015; 63(2): 449-458. doi:10.1109/TMTT.2014.2385087
- 17Dai Z, He S, Peng J, Huang C, Shi W, Pang J. A semi analytical matching approach for power amplifier with extended Chebyshev function and real frequency technique. IEEE Trans Microw Theory Tech. 2017; 65(10): 3892-3902. doi:10.1109/TMTT.2017.2687899
- 18Dai Z, Pang J, Li M, Li Q, Peng J, He S. A direct solving approach for high-order power amplifier matching network design. IEEE Trans Microw Theory Tech. 2020; 68(8): 3278-3286. doi:10.1109/TMTT.2020.2995747
- 19Pang J, He S, Dai Z, Huang C, Peng J, You F. Design of a post-matching asymmetric Doherty power amplifier for broadband applications. IEEE Microw Wirel Compon Lett. 2016; 26(1): 52-54. doi:10.1109/LMWC.2015.2505651
- 20Pang J, He S, Huang C, Dai Z, Peng J, You F. A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications. IEEE Trans Microw Theory Tech. 2015; 63(12): 4061-4071. doi:10.1109/TMTT.2015.2495201
- 21Haynes M, Cripps SC, Benedikt J, Tasker PJ. PAE improvement using 2nd harmonic source injection at x-band; 2012, pp. 1–3.
- 22Bosi G, Raffo A, Vannini G, Cipriani E, Colantonio P, Giannini F. Gate waveform effects on high-efficiency PA design: an experimental validation; 2014, pp. 329–332.
- 23Alizadeh A, Medi A. Investigation of a class-J mode power amplifier in presence of a second-harmonic voltage at the gate node of the transistor. IEEE Trans Microw Theory Tech. 2017; 65(8): 3024-3033. doi:10.1109/TMTT.2017.2666145
- 24Dhar SK, Sharma T, Darraji R, et al. Investigation of input–output waveform engineered continuous inverse class F power amplifiers. IEEE Trans Microw Theory Tech. 2019; 67(9): 3547-3561. doi:10.1109/TMTT.2019.2923187
- 25Dhar SK, Sharma T, Zhu N, et al. Modeling of input nonlinearity and waveform engineered high-efficiency class-F power amplifiers. IEEE Trans Microw Theory Tech. 2020; 68(10): 4216-4228. doi:10.1109/TMTT.2020.3011442
- 26Raab FH. Class-F power amplifiers with maximally flat waveforms. IEEE Trans Microw Theory Tech. 1997; 45(11): 2007-2012. doi:10.1109/22.644215
- 27Cipriani E, Colantonio P, Giannini F, Giofre R. Class-F−1 PA: theoretical aspects; 2010, pp. 29–32.
- 28Wright P, Lees J, Benedikt J, Tasker PJ, Cripps SC. A methodology for realizing high efficiency class-J in a linear and broadband PA. IEEE Trans Microw Theory Tech. 2009; 57(12): 3196-3204. doi:10.1109/TMTT.2009.2033295
- 29Sharma T, Srinidhi ER, Darraji R, et al. High-efficiency input and output harmonically engineered power amplifiers. IEEE Trans Microw Theory Tech. 2018; 66(2): 1002-1014. doi:10.1109/TMTT.2017.2756046
- 30Sharma T, Dhar SK, Holmes DG, et al. Simplified first-pass design of high-efficiency class- F−1 power amplifiers based on second-harmonic minima. IEEE Trans Microw Theory Tech. 2019; 67(7): 3147-3161. doi:10.1109/TMTT.2019.2896558
- 31Carrubba V, Clarke AL, Akmal M, et al. The continuous class-F mode power amplifier; 2010, pp. 1674–1677.
- 32Carrubba V, Lees J, Benedikt J, Tasker PJ, Cripps SC. A novel highly efficient broadband continuous class-F RFPA delivering 74% average efficiency for an octave bandwidth; 2011, pp. 1–4.
- 33Tuffy N, Guan L, Zhu A, Brazil TJ. A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers. IEEE Trans Microw Theory Tech. 2012; 60(6): 1952-1963. doi:10.1109/TMTT.2012.2187534
- 34Bussgang JJ, Ehrman L, Graham JW. Analysis of nonlinear systems with multiple inputs. Proc IEEE 1974; 62(8): 1088–1119.
- 35Colantonio GL, Limiti E. Multiharmonic manipulation for highly efficient microwave power amplifiers. Int J RF Microw Comput-Aided Eng. 2001; 11(6): 366-384.
- 36Jee S, Lee J, Son J, et al. Asymmetric broadband Doherty power amplifier using GaN MMIC for femto-cell base-station. IEEE Trans Microw Theory Tech. 2015; 63(9): 2802-2810. doi:10.1109/TMTT.2015.2442973
- 37Tong R, He S, Zhang B, Jiang Z, Hou X, You F. A novel topology of matching network for realizing broadband high efficiency continuous class-F power amplifiers; 2013, pp. 1475–1478.
- 38Merrick BM, King JB, Brazil TJ. The continuous harmonic-tuned power amplifier. IEEE Microw Wirel Compon Lett. 2015; 25(11): 736-738. doi:10.1109/LMWC.2015.2479850
- 39Sharma T, Darraji R, Ghannouchi F, Dawar N. Generalized continuous class-F harmonic tuned power amplifiers. IEEE Microw Wirel Compon Lett. 2016; 26(3): 213-215. doi:10.1109/LMWC.2016.2524989
- 40Sharma T, Darraji R, Ghannouchi F. Design methodology of high-efficiency contiguous mode harmonically tuned power amplifiers; 2016, pp. 148–150.
- 41Chen J, He S, You F, Tong R, Peng R. Design of broadband high-efficiency power amplifiers based on a series of continuous modes. IEEE Microw Wirel Compon Lett. 2014; 24(9): 631-633. doi:10.1109/LMWC.2014.2331457
- 42Raab FH. Maximum efficiency and output of class-F power amplifiers. IEEE Trans Microw Theory Tech. 2001; 49(6): 1162-1166. doi:10.1109/22.925511
- 43You F, Li C, Peng J, He S. Design of broadband high-efficiency power amplifier through interpolations on continuous operation-modes. IEEE Access. 2019; 7: 10663-10671. doi:10.1109/ACCESS.2019.2890834
- 44Saxena S, Rawat K, Roblin P. Continuous class-B/J power amplifier using a nonlinear embedding technique. IEEE Trans Circuits Syst II. 2017; 64(7): 837-841. doi:10.1109/TCSII.2016.2633300
10.1109/TCSII.2016.2633300 Google Scholar
- 45Li X, Helaoui M, Du X. Class-X—harmonically tuned power amplifiers with maximally flat waveforms suitable for over one-octave bandwidth designs. IEEE Trans Microw Theory Tech. 2018; 66(4): 1939-1950. doi:10.1109/TMTT.2018.2791971
- 46Yang Z, Li M, Dai Z, et al. A generalized high-efficiency broadband class-E/F3 power amplifier based on design space expanding of load network. IEEE Trans Microw Theory Tech. 2020; 68(9): 3732-3744. doi:10.1109/TMTT.2020.3009530