Ground state solutions for Schrödinger–Poisson systems on with a weighted critical exponent
Yao Du
School of Mathematical Sciences, Capital Normal University, Beijing, People's Republic of China
Search for more papers by this authorCorresponding Author
Jiabao Su
School of Mathematical Sciences, Capital Normal University, Beijing, People's Republic of China
Correspondence
Jiabao Su, School of Mathematical Sciences, Capital Normal University, Beijing 100048, People's Republic of China.
Email: [email protected]
Communicated by: C. Ji
Search for more papers by this authorYao Du
School of Mathematical Sciences, Capital Normal University, Beijing, People's Republic of China
Search for more papers by this authorCorresponding Author
Jiabao Su
School of Mathematical Sciences, Capital Normal University, Beijing, People's Republic of China
Correspondence
Jiabao Su, School of Mathematical Sciences, Capital Normal University, Beijing 100048, People's Republic of China.
Email: [email protected]
Communicated by: C. Ji
Search for more papers by this authorFunding information: Supported by NSFC (12271373, 12171326) and KZ202010028048.
Abstract
In this paper, we are interested in the existence of ground state solutions for the weighted critical Schrödinger–Poisson systems. The weighted critical exponent may be the Hénon–Sobolev, the Sobolev or the Hardy–Sobolev critical exponent. Moreover, the potentials are power type, which may be singular at origin or unbounded. Due to the presence of Possion term, we can not directly obtain the boundedness of the Palais–Smale sequences of the associated functional for some cases. The Pohozaev identity, the minimax principle and some techniques are used to overcome the difficulties.
REFERENCES
- 1Wang C, Su J. The existence of ground state solutions for critical Hénon equation in . Preprint; 2019.
- 2Wang C, Su J. Critical exponents of weighted Sobolev embeddings for radial functions. Appl Math Lett. 2020; 107:106484.
- 3Benguria R, Brézis H, Lieb EH. The Thomas–Fermi–von weizsäcker theory of atoms and molecules. Comm Math Phys. 1981; 79: 167-180.
- 4Catto I, Lions PL. Binding of atoms and stability of molecules in Hartree and Thomas–Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular system. Comm Partial Differ Equ. 1992; 17: 1051-1110.
- 5Lieb EH. Thomas–fermi and related theories and molecules. Rev Modern Phys. 1981; 53: 603-641.
- 6Lions PL. Solutions of Hartree–Fock equations for Coulomb systems. Comm Math Phys. 1987; 109: 33-97.
- 7Markowich P, Ringhofer C, Schmeiser C. Semiconductor Equations. New York: Springer-Verlag; 1990.
10.1007/978-3-7091-6961-2 Google Scholar
- 8Benci V, Fortunato D. An eigenvalue problem for the Schrödinger–maxwell equations. Topol Methods Nonlinear Anal. 1998; 11: 283-293.
10.12775/TMNA.1998.019 Google Scholar
- 9Benci V, Fortunato D. Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations. Rev Math Phys. 2002; 14: 409-420.
- 10D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–maxwell equations. Proc Roy Soc Edinburgh Sect A. 2004; 134: 893-906.
- 11D'Aprile T, Mugnai D. Non-existence results for the coupled Klein–Gordon–Maxwell equations. Adv Nonlinear Stud. 2004; 4: 307-322.
- 12Ruiz D. The Schrödinger–poisson equation under the effect of a nonlinear local term. J Funct Anal. 2006; 237: 655-674.
- 13Ambrosetti A. On Schrödinger–poisson systems. Milan J Math. 2008; 76: 257-274.
- 14Cerami G, Vaira G. Positive solutions for some non-autonomous Schrödinger–poisson systems. J Differ Equ. 2010; 248: 521-543.
- 15d'Avenia P, Pomponio A, Vaira G. Infinitely many positive solutions for a Schrödinger–poisson system. Nonlinear Anal. 2011; 74: 5705-5721.
- 16Mercuri C. Positive solutions of nonlinear Schrödinger–poisson systems with radial potentials vanishing at infinity. Atti Accad Naz Lincei Rend Lincei Mat Appl. 2008; 19: 211-227.
10.4171/RLM/520 Google Scholar
- 17Zhao L, Zhao F. Positive solutions for Schrödinger–poisson equations with a critical exponent. Nonlinear Anal. 2009; 70: 2150-2164.
- 18Bonheure D, Mercuri C. Embedding theorems and existence results for nonlinear Schrödinger–poisson systems with unbounded and vanishing potentials. J Differ Equ. 2011; 251: 1056-1085.
- 19Li A, Su J, Zhao L. Existence and multiplicity of solutions of Schrödinger–poisson systems with radial potentials. Proc Roy Soc Edinburgh Sect A. 2014; 144: 319-332.
- 20Mugnai D. The Schrödinger–poisson system with positive potential. Comm Partial Differ Equ. 2011; 36: 1099-1117.
- 21Ambrosetti A, Ruiz R. Multiple bound states for the Schrödinger–poisson problem. Commun Contemp Math. 2008; 10: 391-404.
- 22Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schrödinger-maxwell equations. J Math Anal Appl. 2008; 345: 90-108.
- 23Ianni I. Sign-changing radial solutions for the Schrödinger–poisson–slater problem. Topol Methods Nonlinear Anal. 2013; 41(2): 365-385.
- 24Ianni I, Ruiz D. Ground and bound states for a static Schrödinger–poisson–slater problem. Commun Contemp Math. 2012; 14:1250003.
- 25Mercuri C, Moroz V, Van Schaftingen J. Groundstates and radial solutions to nonlinear Schrödinger–poisson–slater equations at the critical frequency. Calc Var Partial Differ Equ. 2016; 55:146.
- 26Ruiz D. On the Schrödinger–poisson–slater system: Behavior of minimizers, radial and nonradial cases. Arch Ration Mech Anal. 2010; 198: 349-368.
- 27Sun M, Su J, Zhao L. Infinitely many solutions for a Schrödinger–poisson system with concave and convex nonlinearities.Discrete Contin Dyn Syst. 2015; 35: 427-440.
- 28Sun M, Su J, Zhao L. Solutions of a Schrödinger–poisson system with combined nonlinearities. J Math Anal Appl. 2016; 442: 385-403.
- 29Wang C, Su J. Positive radial solutions of critical hénon equations on the unit ball in . Math Methods Appl Sci. 2022; 45(17): 11769-11806.
- 30Du Y, Su J. Ground state solutions for Schrödinger–Poisson systems with multiple weighted critical exponents. NoDEA Nonlinear Differ Equ Appl. 2021; 28(6):66.
- 31Hénon M. Numerical experiments on the stability of spherical stellar systems. Astronomy Astrophys. 1973; 24: 229-238.
- 32Ambrosetti A, Rabinowitz PH. Dual variational methods in critical point theory and applications. J Funct Anal. 1973; 14: 349-381.
10.1016/0022-1236(73)90051-7 Google Scholar
- 33Jeanjean L. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 1997; 28: 1633-1659.
- 34Gidas B, Spruck J. Global and local behavior of positive solutions of nonlinear elliptic equations. Comm Pure Appl Math. 1981; 24: 525-598.
- 35Gladiali F, Grossi M, Neves SLN. Nonradial solutions for the hénon equation in . Adv Math. 2013; 249: 1-36.
- 36Lieb EH. Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann of Math. 1983; 118: 349-374.
- 37Su J, Wang Z-Q, Willem M, Nonlinear Schrödinger equations with unbounded and decaying radial potentials. Commun Contemp Math. 2007; 9: 571-583.
- 38Su J, Wang Z-Q, Willem M. Weighted Sobolev embedding with unbounded and decaying radial potential. J Differ Equ. 2007; 238: 201-219.
- 39Su J, Wang Z-Q. Sobolev type embedding and quasilinear elliptic equations with radial potentials. J Differ Equ. 2011; 250: 223-242.
- 40Lieb EH, Loss M. Analysis: American Mathematical Society; 2001.
10.1090/gsm/014 Google Scholar
- 41Brézis H, Lieb EH. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc. 1983; 88: 486-490.
- 42Ekeland I. On the variational principle. J Math Anal Appl. 1974; 47: 324-353.
- 43Brézis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math. 1983; 36: 437-477.
- 44Willem M. Minimax Theorems. Boston: Birkhäuser Boston. Inc.; 1996.
- 45Pucci P, Servadei R. Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations. Indiana Univ Math J. 2008; 57: 3329-3363.
- 46Pucci P, Servadei R, Existence non-existence. Regularity of radial ground states for -Laplacain equations with singular weights. Ann Inst H Poincaré Anal Non Linéaire. 2008; 25: 505-537.