Solving optimal control problems of Fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis
Corresponding Author
Omar Abu Arqub
Department of Mathematics, Faculty of Science, The University of Jordan, Amman, 11942 Jordan
Correspondence
Omar Abu Arqub, On sabbatical leave from Department of Mathematics, Faculty of Science, Al-Balqa Applied University, Salt 19117, Jordan.
Email: [email protected]; [email protected]
Communicated by: W. Sprößig
Search for more papers by this authorNabil Shawagfeh
Department of Mathematics, Faculty of Science, The University of Jordan, Amman, 11942 Jordan
Search for more papers by this authorCorresponding Author
Omar Abu Arqub
Department of Mathematics, Faculty of Science, The University of Jordan, Amman, 11942 Jordan
Correspondence
Omar Abu Arqub, On sabbatical leave from Department of Mathematics, Faculty of Science, Al-Balqa Applied University, Salt 19117, Jordan.
Email: [email protected]; [email protected]
Communicated by: W. Sprößig
Search for more papers by this authorNabil Shawagfeh
Department of Mathematics, Faculty of Science, The University of Jordan, Amman, 11942 Jordan
Search for more papers by this authorAbstract
Modeling of dynamic systems of optimal control problems (OCPs) is very important issue in applied sciences and engineering. In this analysis, by developed the reproducing kernel Hilbert space (RKHS) method within the calculus of variations, the OCP is solved with respect to initial conditions and Fredholm operator optimality. The solution methodology involves the use of two generalized Hilbert spaces (HSs) for both range and domain spaces. Numerical algorithm and procedure of solution are assembled compatibility with the optimal formulation of the problem. The convergence analysis and error rating of the utilized method are considered under some presumptions, which provide the theoretical structure behind the technique. The optimal profiles show the performance of the numerical solutions and the effect of the Fredholm operator in the optimal results. In this approach, computational simulations are introduced to delineate the suitability, straightforwardness, and relevance of the calculations created.
REFERENCES
- 1Aniţa S, Arnăutu V, Capasso V. An Introduction to Optimal Control Problems in Life Sciences and Economics (Modeling and Simulation in Science, Engineering and Technology). Germany: Springer; 2011.
- 2Athans M, Falb PL. Optimal Control: An Introduction to the Theory and Its Applications (Dover Books on Engineering). Germany: Dover Publications; 2006.
- 3Whittle P. Optimal Control: Basics and Beyond (Wiley Interscience Series in Systems and Optimization). USA: Wiley; 1996.
- 4Geering HP. Optimal Control with Engineering Applications. Germany: Springer; 2007.
- 5Vinter R. Optimal Control (Systems & Control: Foundations & Applications). Germany: Springer; 2000.
- 6Mehne HH, Borzabadi AH. A numerical method for solving optimal control problems using state parametrization. Numer Algorithms. 2006; 42(2): 165-169.
- 7Kafash B, Delavarkhalafi A, Karbassi SM. Application of Chebyshev polynomials to derive efficient algorithms for the solution of optimal control problems. Sci Iran. 2012; 19(3): 795-805.
- 8Nik HS, Effati S. An approximate method for solving a class of nonlinear optimal control problems. Optimal Control Appl Methods. 2014; 35: 324-339.
- 9Ganjefar S, Rezaei S. Modified homotopy perturbation method for optimal control problems using the Padé approximant. App Math Model. 2016; 40(15-16): 7062-7081.
- 10Sweilam NH, Mostafa Al-Ajami T, Hoppe RHW. Numerical solution of some types of fractional optimal control problems. Scientific World Journal. 2013, Article ID 306237; 2013. https://doi.org/10.1155/2013/306237: 1-9.
- 11Khan NA, Razzaq OA, Hameed T, Ayaz M. Numerical scheme for global optimization of fractional optimal control problem with boundary conditions. Int J Innov Comput Inf Control. 2017; 13: 1669-1679.
- 12Zahedi MS, Nik HS. On homotopy analysis method applied to linear optimal control problems. App Math Model. 2013; 37(23): 9617-9629.
- 13Costanza V, Rivadeneira PS, Spies RD. Equations for the missing boundary values in the hamiltonian formulation of optimal control problems. J Optim Theory Appl. 2011; 149(1): 26-46.
- 14Salama AA. Numerical methods based on extended one-step methods for solving optimal control problems. Appl Math Comput. 2006; 183(1): 243-250.
- 15Ito K, Kunischb K. Semi-smooth Newton methods for state-constrained optimal control problems. Syst Control Lett. 2003; 50(3): 221-228.
- 16Zaky MA, Machado JAT. On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun Nonlinear Sci Numer Simul. 2017; 52: 177-189.
- 17Abo-Hammour ZS, Asasfeh AG, Al-Smadi AM, Alsmadi OMK. A novel continuous genetic algorithm for the solution of optimal control problems. Optimal Control Appl Methods. 2011; 32(4): 414-432.
- 18Garg D, Patterson M, Hager WW, Rao AV, Benson DA, Huntington GT. A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica. 2010; 46(11): 1843-1851.
- 19Diehl M, Gerhard J, Marquardt W, Monnigmann M. Merical solution approaches for robust nonlinear optimal control problems. Comput Chem Eng. 2008; 32(6): 1279-1292.
- 20Zaremba S. L'equation biharminique et une class remarquable defonctionsfoundamentals harmoniques. Bull Int Acad Sci Cracovie. 1907; 39: 147-196.
- 21Aronszajn N. Theory of reproducing kernels. Trans Amer Math Soc. 1950; 68(3): 337-404.
- 22Cui M, Lin Y. Nonlinear Numerical Analysis in the Reproducing Kernel Space. USA: Nova Science; 2009.
- 23Berlinet A, Agnan CT. Reproducing Kernel Hilbert Space in Probability and Statistics. USA: Kluwer Academic Publishers; 2004.
10.1007/978-1-4419-9096-9 Google Scholar
- 24Daniel A. Reproducing Kernel Spaces and Applications. Switzerland: Springer; 2003.
- 25Weinert HL. Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing. USA: Hutchinson Ross; 1982.
- 26Abu Arqub O. Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fund Inform. 2016; 146(3): 231-254.
- 27Abu Arqub O, Maayah B. Solutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm. Neural Comput Appl. 2018; 29(5): 1465-1479.
- 28Abu Arqub O. Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer Methods Partial Differential Equations. 2018; 34(5): 1759-1780.
- 29Abu Arqub O. Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int J Numer Methods Heat Fluid Flow. 2018; 28(4): 828-856.
- 30Abu Arqub O, Shawagfeh N. Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J Porous Media. 2019. https://doi.org/10.1615/JPorMedia.2019028970
- 31Abu Arqub O. Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput Math Applic. 2017; 73(6): 1243-1261.
- 32Abu Arqub O, Al-Smadi M. Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer Methods Partial Differential Equations. 2018; 34(5): 1577-1597.
- 33Abu Arqub O. The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math Methods Appl Sci. 2016; 39(15): 4549-4562.
- 34Abu Arqub O, Al-Smadi M, Shawagfeh N. Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput. 2013; 219(17): 8938-8948.
- 35Abu Arqub O, Al-Smadi M. Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput. 2014; 243: 911-922.
- 36Momani S, Abu Arqub O, Hayat T, Al-Sulami H. A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera type. Appl Math Comput. 2014; 240: 229-239.
- 37Abu Arqub O, Al-Smadi M, Momani S, Hayat T. Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 2016; 20(8): 3283-3302.
- 38Abu Arqub O, Al-Smadi M, Momani S, Hayat T. Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput. 2017; 21(23): 7191-7206.
- 39Abu Arqub O. Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput Applic. 2017; 28(7): 1591-1610.
- 40Abu Arqub O, Odibat Z, Al-Smadi M. Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn. 2018; 94(3): 1819-1834.
- 41Abu Arqub O. Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo. 2018; 55(3): 1-28. https://doi.org/10.1007/s10092-018-0274-3
- 42Al-Smadi M, Abu Arqub O. Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl Math Comput. 2019; 342: 280-294.
- 43Abu Arqub O, Al-Smadi M. Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space. Chaos Solitons Fractals. 2018; 117: 161-167.
- 44Abu Arqub O, Maayah B. Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator. Chaos Solitons Fractals. 2018; 117: 117-124.
- 45Geng FZ, Qian SP. Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl Math Lett. 2013; 26(10): 998-1004.
- 46Jiang W, Chen Z. A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer Methods Partial Differential Equations. 2014; 30(1): 289-300.
- 47Geng FZ, Qian SP, Li S. A numerical method for singularly perturbed turning point problems with an interior layer. J Comput Appl Math. 2014; 255: 97-105.
- 48Geng FZ, Cui M. A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl Math Lett. 2012; 25(5): 818-823.
- 49Sontag ED. Mathematical Control Theory. Germany: Springer; 1998.
10.1007/978-1-4612-0577-7 Google Scholar
- 50ontryagin LS, Boltyanskii VG, amkrelidze RV, Mishenko EF. The Mathematical Theory of Optimal Processes. USA: Wiley; 1962.
- 51Abu Arqub O, El-Ajou A, Momani S. Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J Comput Phys. 2015; 293: 385-399.
- 52El-Ajou A, Abu Arqub O, Momani S, Baleanu D, Alsaedi A. A novel expansion iterative method for solving linear partial differential equations of fractional order. Appl Math Comput. 2015; 257: 119-133.
- 53El-Ajou A, Abu Arqub O, Momani S. Approximate analytical solution of the nonlinear fractional KdV-burgers equation: a new iterative algorithm. J Comput Phys. 2015; 293: 81-95.
- 54El-Ajou A, Abu Arqub O, Al-Smadi M. A general form of the generalized Taylor's formula with some applications. Appl Math Comput. 2015; 256: 851-859.
- 55Youssri YH, Abd-Elhameed WM. Spectral tau algorithm for solving a class of fractional optimal control problems via Jacobi polynomials. Int J Optimization Control Theories Appl. 2018; 8: 152-160.
- 56Osman MS, Korkmaz A, Rezazadeh H, Mirzazadeh M, Eslami M, Zhou Q. The unified method for conformable time fractional Schrödinger equation with perturbation terms. Chin J Phys. 2018; 56(5): 2500-2506.
- 57Osman MS, Abdel-Gawad HI, El Mahdy MA. Two-layer-atmospheric blocking in a medium with high nonlinearity and lateral dispersion. Results Phys. 2018; 8: 1054-1060.
- 58Osman MS. On complex wave solutions governed by the 2D Ginzburg–Landau equation with variable coefficients. Optik. 2018; 156: 169-174.
- 59Osman MS, Machado JAT. New nonautonomous combined multi-wave solutions for (2+1)-dimensional variable coefficients KdV equation. Nonlinear Dyn. 2018; 93(2): 733-740.
- 60Osman MS. Multiwave solutions of time-fractional (2+1)-dimensional Nizhnik–Novikov–Veselov equations. Pramana. 2017; 88(4):67. https://doi.org/10.1007/s12043-017-1374-3
- 61Wazwaz AM, Osman MS. Analyzing the combined multi-waves polynomial solutions in a two-layer-liquid medium. Comput Math Appl. 2018; 76(2): 276-283.
- 62Abdel-Gawad HI, Osman M. Exact solutions of the Korteweg-de Vries equation with space and time dependent coefficients by the extended unified method. Ind J Pure Appl Math. 2014; 45(1): 1-12.