Volume 41, Issue 7 pp. 2535-2545
RESEARCH ARTICLE

Lebesgue regularity for differential difference equations with fractional damping

Carlos Lizama

Corresponding Author

Carlos Lizama

Facultad de Ciencias, Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Las Sophoras 173, Estación Central, Santiago, Chile

Correspondence

Carlos Lizama, Facultad de Ciencias, Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Las Sophoras 173, Estación Central, Santiago, Chile.

Email: [email protected]

Search for more papers by this author
Marina Murillo-Arcila

Marina Murillo-Arcila

Institut de Matemàtiques i Aplicacions de Castelló (IMAC), Universitat Jaume I, Campus del Riu Sec s/n, 12071, Castelló, Spain

Search for more papers by this author
Claudio Leal

Claudio Leal

Facultad de Ciencias, Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Las Sophoras 173, Estación Central, Santiago, Chile

Search for more papers by this author
First published: 25 January 2018
Citations: 11

Abstract

We provide necessary and sufficient conditions for the existence and uniqueness of solutions belonging to the vector-valued space of sequences urn:x-wiley:mma:media:mma4757:mma4757-math-0001 for equations that can be modeled in the form

urn:x-wiley:mma:media:mma4757:mma4757-math-0002
where X is a Banach space, urn:x-wiley:mma:media:mma4757:mma4757-math-0003 A is a closed linear operator with domain D(A) defined on X, and G is a nonlinear function. The operator Δγ denotes the fractional difference operator of order γ>0 in the sense of Grünwald-Letnikov. Our class of models includes the discrete time Klein-Gordon, telegraph, and Basset equations, among other differential difference equations of interest. We prove a simple criterion that shows the existence of solutions assuming that f is small and that G is a nonlinear term.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.