Convergence of FFT-based homogenization for strongly heterogeneous media
Corresponding Author
Matti Schneider
Technische Universität Chemnitz Faculty of Mechanical Engineering, Department of Lightweight Structures and Polymer Technology, 09107 Chemnitz, Germany
Correspondence to: Matti Schneider, Technische Universität Chemnitz Faculty of Mechanical Engineering, Department of Lightweight Structures and Polymer Technology, 09107 Chemnitz, Germany.
E-mail: [email protected]
Search for more papers by this authorCorresponding Author
Matti Schneider
Technische Universität Chemnitz Faculty of Mechanical Engineering, Department of Lightweight Structures and Polymer Technology, 09107 Chemnitz, Germany
Correspondence to: Matti Schneider, Technische Universität Chemnitz Faculty of Mechanical Engineering, Department of Lightweight Structures and Polymer Technology, 09107 Chemnitz, Germany.
E-mail: [email protected]
Search for more papers by this authorAbstract
The FFT-based homogenization method of Moulinec–Suquet has recently attracted attention because of its wide range of applicability and short computational time. In this article, we deduce an optimal a priori error estimate for the homogenization method of Moulinec–Suquet, which can be interpreted as a spectral collocation method. Such methods are well-known to converge for sufficiently smooth coefficients. We extend this result to rough coefficients. More precisely, we prove convergence of the fields involved for Riemann-integrable coercive coefficients without the need for an a priori regularization.
We show that our L2 estimates are optimal and extend to mildly nonlinear situations and Lp estimates for p in the vicinity of 2. The results carry over to the case of scalar elliptic and curl − curl-type equations, encountered, for instance, in stationary electromagnetism. Copyright © 2014 John Wiley & Sons, Ltd.
References
- 1 Moulinec H, Suquet P. A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes Rendus de l' Academie des Sciences 1994; 318(11): 1417–1423.
- 2 Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering 1998; 157: 69–94. DOI: 10.1016/S0045-7825(97)00218-1.
- 3
Bishop JFW,
Hill R. A theoretical derivation of the plastic properties of a polycrystalline face-centred metal. Philosophical Magazine 1951; 42(334): 1298–1307. DOI: 10.1080/14786444108561385.
10.1080/14786444108561385 Google Scholar
- 4
Bishop JFW,
Hill R. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Philosophical Magazine 1951; 42(7): 414–427. DOI: 10.1080/14786445108561065.
10.1080/14786445108561065 Google Scholar
- 5 Sab K. On the homogenization and the simulation of random materials. European Journal of Mechanics - A/Solids 1992; 11: 585–607.
- 6 Kanit T, Guyen FN, Forest S, Jeulin D, Reed M, Singleton S. Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry. Computer Methods in Applied Mechanics and Engineering 2006; 195: 3960–3982. DOI: 10.1016/j.cma.2005.07.022.
- 7 Voigt W. Theoretische Studien über die Elasticitätsverhältnisse der Krystalle I. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 1887; 34: 3–52.
- 8 Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift fur Angewandte Mathematik und Mechanik 1929; 9(1): 49–58. DOI: 10.1002/zamm.19290090104.
- 9 Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of polycrystals. Journal of the Mechanics and Physics of Solids 1962; 10(4): 343–671.
- 10 Zeller R, Dederichs PH. Elastic constants of polycrystals. Physica Status Solidi (b) 1973; 55(2): 831–842. DOI: 10.1002/pssb.2220550241.
- 11 Kröner E. Statistical Continuum Mechanics. Springer-Verlag: Wien, 1971.
- 12 Willis JR. Variational and related methods for the overall properties of composites. Advances in Applied Mechanics 1982; 21: 1–78.
- 13 Mori T, Tanaka K. Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 1973; 21(5): 571–574. DOI: 10.1016/0001-6160(73)90064-3.
- 14 Benveniste Y. A new approach to the application of MoriTanaka's theory in composite materials. Mechanics of Materials 1987; 6: 147–157. DOI: 10.1016/0167-6636(87)90005-6.
- 15 Ponte Castañeda P, Willis JR. The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids 1995; 43: 1919–1951. DOI: 10.1016/0022-5096(95)00058-Q.
- 16 McCartney LN, Kelly A. Maxwell's far-field methodology applied to the prediction of properties of multi-phase isotropic particulate composites. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2008; 464: 423–446. DOI: 10.1098/rspa.2007.0071.
- 17 McCartney LN. Maxwell's far-field methodology predicting elastic properties of multiphase composites reinforced with aligned transversely isotropic spheroids. Philosophical Magazine 2010; 90: 4175–4207. DOI: 10.1080/14786431003752142.
- 18 Walpole LJ. On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids 1969; 17: 235–251. 1969.
- 19 Kröner E. Bounds for effective elastic moduli of disordered materials. Journal of the Mechanics and Physics of Solids 1977; 25: 137–155. DOI: 10.1016/0022-5096(77)90009-6.
- 20 Christensen RM, Lo KH. Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids 1979; 27: 315–330. DOI: 10.1016/0022-5096(79)90032-2.
- 21 Hervé E, Zaoui A. n-Layered inclusion-based micromechanical modelling. International Journal of Engineering Science 1993; 31: 1–10.
- 22 Klusemann B, Böhm H, Svendsen B. Homogenization methods for multi-phase elastic composites with non-elliptical reinforcements: comparisons and benchmarks. European Journal of Mechanics - A/Solids 2012; 35: 21–37. DOI: 10.1016/j.euromechsol.2011.12.002.
- 23 Johnson SG, Frigo M. A modified split-radix FFT with fewer arithmetic operations. IEEE Transactions on Signal Processing 2007; 55(1): 111–119. DOI: 10.1109/TSP.2006.882087.
- 24 Lahellec N, Michel JC, Moulinec H, Suquet P. Analysis of inhomogeneous materials at large strains using fast fourier transforms. IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains Solid Mechanics and Its Applications, Vol. 108, held in Stuttgart, Germany, 2003, 247–258. DOI: 10.1007/978-94-017-0297-3_22.
- 25 Gélébart L, Mondon-Cancel R. Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials. Computational Materials Science 2013; 77: 430–439. DOI: 10.1016/j.commatsci.2013.04.046.
- 26 Monchiet V, Bonnet G. Numerical homogenization of nonlinear composites with a polarization-based FFT iterative scheme. Computational Materials Science 2013; 79: 276–283. DOI: 10.1016/j.commatsci.2013.04.035.
- 27 Eyre DJ, Milton GW. A fast numerical scheme for computing the response of composites using grid refinement. Journal de Physique III 1999; 6: 41–47. DOI: 10.1051/epjap:1999150.
- 28
Michel JC,
Moulinec H,
Suquet P. A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast. Computer Modeling in Engineering & Sciences 2000; 1(2): 9–88. DOI: 10.1002/nme.275.
10.1002/nme.275 Google Scholar
- 29 Monchiet V, Bonnet G. A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast. International Journal for Numerical Methods in Engineering 2012; 89(11): 1419–1436. DOI: 10.1002/nme.3295.
- 30 Zeman J, Vondřejc J, Novák J, Marek I. Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. Journal of Computational Physics 2010; 229(21): 8065–8071. DOI: 10.1016/j.jcp.2010.07.010.
- 31 Vondřejc J, Zeman J, Marek I. Analysis of a fast Fourier transform based method for modeling of heterogeneous materials. LSSC'11 Proceedings of the 8th International Conference on Large-Scale Scientific Computing, held in Sozopol, Bulgaria, 2012; 515–522. DOI: 10.1007/978-3-642-29843-1_58.
- 32 Brisard S, Dormieux L. FFT-based methods for the mechanics of composites: a general variational framework. Computational Materials Science 2010; 49: 663–671. DOI: 10.1016/j.commatsci.2010.06.009.
- 33 Brisard S, Dormieux L. Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites. Computer Methods in Applied Mechanics and Engineering 2012; 217–220: 197–212. DOI: 10.1016/j.cma.2012.01.003.
- 34 Bonnet G. Effective properties of elastic periodic composite media with fibers. Journal of the Mechanics and Physics of Solids 2007; 55: 881–899. DOI: 10.1016/j.jmps.2006.11.007.
- 35 Willot F, Pellegrini YP. Fast Fourier transform computations and build-up of plastic deformation in 2D, elastic-perfectly plastic, pixelwise disordered porous media, 18.2.2008. arXiv:0802.2488.
- 36 Willot F, Abdallah B, Pellegrini YP. Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields, 3.7.2013. arXiv:1307.1015.
- 37 Yvonnet J. A fast method for solving microstructural problems defined by digital images: a space LippmannâĂŞSchwinger scheme. International Journal for Numerical Methods in Engineering 2012; 92: 178–205. DOI: 10.1002/nme.4334.
- 38 Kaßbohm S, Müller WH, Feßler R. Improved approximations of Fourier coefficients for computing periodic structures with arbitrary stiffness distribution. Computational Materials Science 2006; 37: 90–93. DOI: 10.1016/j.commatsci.2005.12.010.
- 39 Vinogradov V, Milton GW. An accelerated FFT algorithm for thermoelastic and non-linear composites. International Journal for Numerical Methods in Engineering 2008; 76: 1678–1695. DOI: 10.1002/nme.2375.
- 40 Brenner R. Numerical computation of the response of piezoelectric composites using Fourier transform. Physical Review B 2009; 79(18): 184106. DOI: 10.1103/PhysRevB.79.184106.
- 41 Lebensohn RA, Rollet AD, Suquet P. Fast Fourier transform-based modeling for the determination of micromechanical fields in polycrystals. JOM 2001; 63(3): 13–18. DOI: 10.1007/s11837-011-0037-y.
- 42 Lebensohn RA. N-site modelling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Materialia 2001 49: 2723–2737. DOI: 10.1016/S1359-6454(01)00172-0.
- 43 Lebensohn RA, Kanjarla AK, Eisenlohr P. An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. International Journal of Plasticity 2012; 3233: 59–69. DOI: 10.1016/j.ijplas.2011.12.005.
- 44 Lee SB, Lebensohn RA, Rollet AD. Modeling the viscoplastic micromechanical response of two-phase materials using fast Fourier transforms. International Journal of Plasticity 2011; 27: 707–727. DOI: 10.1016/j.ijplas.2010.09.002.
- 45 Eisenlohr P, Diehl M, Lebensohn RA, Roters F. A spectral method solution to crystal elasto-viscoplasticity at finite strains. International Journal of Plasticity 2013; 46: 37–53. DOI: 10.1016/j.ijplas.2012.09.012.
- 46
Bignonnet F,
Dormieux L. FFT-based homogenization of permeability using a Hashin-Shtrikman type variational framework. Poromechanics 2013; V: 1245–1254. DOI: 10.1061/9780784412992.149.
10.1061/9780784412992.149 Google Scholar
- 47 Monchiet V, Bonnet G, Lauriat G. A FFT-based method to compute the permeability induced by a Stokes slip flow through a porous medium. Comptes Rendus Mecanique 2009; 337: 192–197. DOI: 10.1016/j.crme.2009.04.003.
- 48 Suquet P, Moulinec H, Castelnau O, Montagnat M, Lahellec N, Grennerat F, Duval P, R Brenner. Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep. Procedia IUTAM 2012; 3: 64–78. DOI: 10.1016/j.piutam.2012.03.006.
- 49 Tran TH, Monchiet V, Bonnet G. A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media. International Journal of Solids and Structures 2011; 49(5): 783–792. DOI: 10.1016/j.ijsolstr.2011.11.017.
- 50 Li J, Meng S, Tian X, Song F, Jiang C. A non-local fracture model for composite laminates and numerical simulations by using the FFT method. Composites: Part B 2012; 43: 961–971. DOI: 10.1016/j.compositesb.2011.08.055.
- 51 Spahn J, Andrä H, Kabel M, Müller R. A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms. Computer Methods in Applied Mechanics and Engineering 2014, 268: 871–883. DOI: 10.1016/j.cma.2013.10.017.
- 52 Li J, Tian X, Abdelmoula R. A damage model for crack prediction in brittle and quasi-brittle materials solved by the FFT method. International Journal of Fracture 2012; 173: 135–146. 2012. DOI 10.1007/s10704-011-9671-1.
- 53 Moulinec H, Suquet P. Intraphase strain heterogeneity in nonlinear composites: a computational approach. European Journal of Mechanics A/Solids 2003; 22: 751–770. DOI: 10.1016/S0997-7538(03)00079-2.
- 54 Andrä H, Combaret N, Dvorkin J, Glatt E, Han J, Kabel M, Keehm Y, Krzikalla F, Lee M, Madonna C, Marsh M, Mukerji T, Saenger EH, Sain R, Saxena N, Ricker S, Wiegmann A, X Zhan. Digital rock physics benchmarks – part II: computing effective properties. Computers & Geosciences 2013; 50: 33–43. DOI: 10.1016/j.cageo.2012.09.008.
- 55 Willot F, Jeuling D. Elastic behavior of composites containing Boolean random sets of inhomogeneities. International Journal of Engineering Science 47 2009; 313–324. DOI: 10.1016/j.ijengsci.2008.09.016.
- 56 Xu XF, Graham-Brady L. A stochastic computational method for evaluation of global and local behavior of random elastic media. Computer Methods in Applied Mechanics and Engineering 2005; 194: 4362–4385. DOI: 10.1016/j.cma.2004.12.001.
- 57 Xu XF, Graham-Brady L. Computational stochastic homogenization of random media elliptic problems using Fourier Galerkin method. Finite Elements in Analysis and Design 2006; 42: 613–622. DOI: 10.1016/j.finel.2005.11.003.
- 58
Milton GW. The Theory of Composites. Cambridge University Press: Cambridge, 2002. DOI: 10.1017/CBO9780511613357.
10.1017/CBO9780511613357 Google Scholar
- 59 Vondřejc J. FFT-based method for homogenization of periodic media: theory and applications. Doctoral Thesis, Department of Mechanics, Faculty of Civil Engineering, Czech Technical University, Czech Republic, Prague, January, 2013. 143 pages.
- 60
Boyd JP. Chebyshev and Fourier Spectral Methods. Springer-Verlag: Berlin, 1989.
10.1007/978-3-642-83876-7 Google Scholar
- 61 Marcinkiewicz J. On interpolation I. Studia Mathematica 1936; 6: 1–17. (in French).
- 62 Zygmund A. Trigonometric Series, vol. I, Cambridge University Press: Cambridge, 1990.
- 63 Körner TW. ACompanion to Analysis: A Second First and First Second Course in Analysis, Graduate Studies in Mathematics. American Mathematical Society: Providence, 2004.
- 64 Dahlberg BEJ, Kenig CE. Lp estimates for the three-dimensional systems of elastostatics on Lipschitz domains. in Analysis and Partial Differential Equations. Lecture Notes in Pure and Appl. Math., vol. 122. Dekker: New York, 1990; 621–634. 1990.
- 65 Rudin W. Functional Analysis. McGraw-Hill Science: New York City, 1991.
- 66
Atkinson KE. The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press: Cambridge, 1997.
10.1017/CBO9780511626340 Google Scholar
- 67 Stein E. Singular Integrals and Differentiability Properties of Functions. Princeton University Press: Princeton, 1970.