On the hyperbolicity of certain models of polydisperse sedimentation
Corresponding Author
Raimund Bürger
CI2MA and Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
Raimund Bürger, CI2MA and Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
E-mail: [email protected]
Search for more papers by this authorRosa Donat
Departament de Matemàtica Aplicada, Universitat de València, Av. Dr. Moliner 50, E-46100 Burjassot, Spain
Search for more papers by this authorPep Mulet
Departament de Matemàtica Aplicada, Universitat de València, Av. Dr. Moliner 50, E-46100 Burjassot, Spain
Search for more papers by this authorCarlos A. Vega
Departamento de Matemáticas y Estadística, División de Ciencias Básicas, Universidad del Norte, Barranquilla, Colombia
Search for more papers by this authorCorresponding Author
Raimund Bürger
CI2MA and Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
Raimund Bürger, CI2MA and Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
E-mail: [email protected]
Search for more papers by this authorRosa Donat
Departament de Matemàtica Aplicada, Universitat de València, Av. Dr. Moliner 50, E-46100 Burjassot, Spain
Search for more papers by this authorPep Mulet
Departament de Matemàtica Aplicada, Universitat de València, Av. Dr. Moliner 50, E-46100 Burjassot, Spain
Search for more papers by this authorCarlos A. Vega
Departamento de Matemáticas y Estadística, División de Ciencias Básicas, Universidad del Norte, Barranquilla, Colombia
Search for more papers by this authorAbstract
The sedimentation of a polydisperse suspension of small spherical particles dispersed in a viscous fluid, where particles belong to N species differing in size, can be described by a strongly coupled system of N scalar, nonlinear first-order conservation laws for the evolution of the volume fractions. The hyperbolicity of this system is a property of theoretical importance because it limits the range of validity of the model and is of practical interest for the implementation of numerical methods. The present work, which extends the results of R. Bürger, R. Donat, P. Mulet, and C.A. Vega (SIAM Journal on Applied Mathematics 2010; 70:2186–2213), is focused on the fluxes corresponding to the models by Batchelor and Wen, Höfler and Schwarzer, and Davis and Gecol, for which the Jacobian of the flux is a rank-3 or rank-4 perturbation of a diagonal matrix. Explicit estimates of the regions of hyperbolicity of these models are derived via the approach of the so-called secular equation (J. Anderson. Linear Algebra and Applications 1996; 246:49–70), which identifies the eigenvalues of the Jacobian with the poles of a particular rational function. Hyperbolicity of the system is guaranteed if the coefficients of this function have the same sign. Sufficient conditions for this condition to be satisfied are established for each of the models considered. Some numerical examples are presented. Copyright © 2012 John Wiley & Sons, Ltd.
References
- 1 Masliyah JH. Hindered settling in a multiple-species particle system. Chemical Engineering Science 1979; 34: 1166–1168.
- 2 Lockett MJ, Bassoon KS. Sedimentation of binary particle mixtures. Powder Technology 1979; 24: 1–7.
- 3 Batchelor GK. Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory. Journal of Fluid Mechanics 1982; 119: 379–408.
- 4 Batchelor GK, Wen CS. Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results. Journal of Fluid Mechanics 1982; 124: 495–528.
- 5 Davis RH, Gecol H. Hindered settling function with no empirical parameters for polydisperse suspensions. AIChE Journal 1994; 40: 570–575.
- 6 Bürger R, Fjelde KK, Höfler K, Karlsen KH. Central difference solutions of the kinematic model of settling of polydisperse suspensions and three-dimensional particle-scale simulations. Journal of Engineering Mathematics 2001; 41: 167–187.
- 7 Höfler K. Simulation and modeling of mono- and bidisperse suspensions. Doctoral Thesis, Institut für Computeranwendungen, Universität Stuttgart, Germany, 2000.
- 8
Höfler K,
Schwarzer S. The structure of bidisperse suspensions al low Reynolds numbers. In Multifield Problems: State of the Art. AM Sändig, W Schiehlen, WL Wendland (eds). Springer Verlag: Berlin, 2000; 42–49.
10.1007/978-3-662-04015-7_5 Google Scholar
- 9 Donat R, Mulet P. A secular equation for the Jacobian matrix of certain multi-species kinematic flow models. Numerical Methods for Partial Differential Equations 2010; 26: 159–175.
- 10 Anderson J. A secular equation for the eigenvalues of a diagonal matrix perturbation. Linear Algebra and Applications 1996; 246: 49–70.
- 11 Bürger R, Donat R, Mulet P, Vega CA. On the implementation of WENO schemes for a class of polydisperse sedimentation models. Journal of Computational Physics 2011; 230: 2322–2344.
- 12 Berres S, Bürger R, Karlsen KH, Tory EM. Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM Journal on Applied Mathematics 2003; 64: 41–80.
- 13 Rosso F, Sona G. Gravity-driven separation of oil-water dispersions. Advances in Mathematical Sciences and Applications 2001; 11: 127–151.
- 14 Zhang P, Liu RX, Wong SC, Dai SQ. Hyperbolicity and kinematic waves of a class of multi-population partial differential equations. European Journal of Applied Mathematics 2006; 17: 171–200.
- 15 Bürger R, Donat R, Mulet P, Vega CA. Hyperbolicity analysis of polydisperse sedimentation models via a secular equation for the flux Jacobian. SIAM Journal on Applied Mathematics 2010; 70: 2186–2213.
- 16 Bürger R, Karlsen KH, Tory EM, Wendland WL. Model equations and instability regions for the sedimentation of polydisperse suspensions of spheres. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 2002; 82: 699–722.
- 17 Biesheuvel PM, Verweij H, Breedveld V. Evaluation of instability criterion for bidisperse sedimentation. AIChE Journal 2001; 47: 45–52.
- 18 Bargieł M, Tory EM. Stability of tridisperse suspensions. Computing and Visualization in Science 2007; 10: 163–170.
- 19 Basson DK, Berres S, Bürger R. On models of polydisperse sedimentation with particle-size-specific hindered-settling factors. Applied Mathematical Modelling 2009; 33: 1815–1835.
- 20 Xue B, Sun Y. Modeling of sedimentation of polydisperse spherical beads with a broad size distribution. Chemical Engineering Science 58: 1531–1543.
- 21 Zeidan A, Rohani S, Bassi A. Dynamic and steady-state sedimentation of polydisperse suspension and prediction of outlets particle-size distribution. Chemical Engineering Science 2004; 59: 2619–2632.
- 22 Bürger R, Kozakevicius A. Adaptive multiresolution WENO schemes for multi-species kinematic flow models. Journal of Computational Physics 2007; 224: 1190–1222.
- 23 Bürger R, García A, Kunik M. A generalized kinetic model of sedimentation of polydisperse suspensions with a continuous particle size distribution. Mathematical Models and Methods in Applied Sciences 2008; 18: 1741–1785.
- 24 Dorrell R, Hogg AJ, Sumner EJ, Talling PJ. The structure of the deposit produced by sedimentation of polydisperse suspensions. Journal of Geophysical Research 2011; 116. paper F01024, 12 pp.
- 25 Weiland RH, Fessas YP, Ramarao BV. On instabilities arising during sedimentation of two-component mixtures of solids. Journal of Fluid Mechanics 1984; 142: 383–389.
- 26 Berres S, Bürger R, Karlsen KH. Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensions. Journal of Computational and Applied Mathematics 2004; 164-165: 53–80.
- 27 Berres S, Bürger R. On the settling of a bidisperse suspension with particles having different sizes and densities. Acta Mechanica 2008; 201: 47–62.
- 28 Cuthbertson A, Dong P, King S, Davies P. Hindered settling velocity of cohesive/non-cohesive sediment mixtures. Coastal Engineering 2008; 55: 1197–1208.
- 29 Davis RH, Gecol H. Classification of concentrated suspensions using inclined settlers. International Journal of Multiphase Flow 1996; 22: 563–574.
- 30 Ha Z, Liu S. Settling velocities of polydisperse concentrated suspensions. Canadian Journal of Chemical Engineering 2002; 80: 783–790.
- 31
Wen CS. The Fundamentals of Aerosol Dynamics. World Scientific: Singapore, 1996.
10.1142/9789812796325 Google Scholar
- 32 Wang H, Wen CS. Settling of polydisperse particles with thin double layer at small Péclet number. AIChE Journal 1999; 45: 2306–2312.
- 33 Koo S. Numerical simulation of bidisperse hard spheres settling in a fluid. Korean Journal of Chemical Engineering 2011; 28: 364–369.
- 34 Donat R, Mulet P. Characteristic-based schemes for multi-class Lighthill–Whitham–Richards traffic models. Journal of Scientific Computing 2008; 37: 233–250.
- 35 Benzoni-Gavage S, Colombo RM. An n-populations model for traffic flow. European Journal of Applied Mathematics 2003; 14: 587–612.
- 36 Wong GCK, Wong SC. A multi-class traffic flow model—an extension of LWR model with heterogeneous drivers. Transportation Research A 2002; 36: 827–841.
- 37 Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes II. Journal of Computational Physics 1989; 83: 32–78.
- 38 Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. Journal of Computational Physics 2005; 207: 542–567.
- 39
Russel WB,
Saville DA,
Schowalter WR. Colloidal Dispersions. Cambridge University Press: Cambridge, 1989.
10.1017/CBO9780511608810 Google Scholar
- 40 Wang H, Wen CS. Sedimentation in a dilute suspension of charged particles. Powder Technology 2002; 122: 10–18.
- 41 Koo S. Sedimentation velocity of bidisperse suspensions. Journal of Industrial and Engineering Chemistry 2008; 14: 679–686.
- 42 Schneider W, Anestis G, Schaflinger U. Sediment composition due to settling of particles of different sizes. International Journal of Multiphase Flow 1985; 11: 419–423.
- 43 Smith TN. The sedimentation of particles having a dispersion of sizes. Transactions of the Institution of Chemical Engineers (London) 1966; 44: T153–T157.