Strategies for designing proteolysis targeting chimaeras (PROTACs)
Shipeng He
Institute of Translational Medicine, Shanghai University, Shanghai, China
Search for more papers by this authorGuoqiang Dong
School of Pharmacy, Second Military Medical University, Shanghai, China
Search for more papers by this authorJunfei Cheng
School of Pharmacy, Second Military Medical University, Shanghai, China
Search for more papers by this authorYing Wu
School of Pharmacy, Second Military Medical University, Shanghai, China
Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
Search for more papers by this authorCorresponding Author
Chunquan Sheng
School of Pharmacy, Second Military Medical University, Shanghai, China
Correspondence Chunquan Sheng, School of Pharmacy, Second Military Medical University, 325 Guohe Rd, Shanghai 200433, China.
Email: [email protected]
Search for more papers by this authorShipeng He
Institute of Translational Medicine, Shanghai University, Shanghai, China
Search for more papers by this authorGuoqiang Dong
School of Pharmacy, Second Military Medical University, Shanghai, China
Search for more papers by this authorJunfei Cheng
School of Pharmacy, Second Military Medical University, Shanghai, China
Search for more papers by this authorYing Wu
School of Pharmacy, Second Military Medical University, Shanghai, China
Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
Search for more papers by this authorCorresponding Author
Chunquan Sheng
School of Pharmacy, Second Military Medical University, Shanghai, China
Correspondence Chunquan Sheng, School of Pharmacy, Second Military Medical University, 325 Guohe Rd, Shanghai 200433, China.
Email: [email protected]
Search for more papers by this authorShipeng He, Guoqiang Dong, Junfei Cheng, and Ying Wu contributed equally to this study.
Abstract
Proteolysis targeting chimaeras (PROTACs) is a cutting edge and rapidly growing technique for new drug discovery and development. Currently, the largest challenge in the molecular design and drug development of PROTACs is efficient identification of potent and drug-like degraders. This review aims to comprehensively summarize and analyse state-of-the-art methods and strategies in the design of PROTACs. We provide a detailed illustration of the general principles and tactics for designing potent PROTACs, highlight representative case studies, and discuss the advantages and limitations of these strategies. Particularly, structure-based rational PROTAC design and emerging new types of PROTACs (e.g., homo-PROTACs, multitargeting PROTACs, photo-control PROTACs and PROTAC-based conjugates) will be focused on.
CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon request.
REFERENCES
- 1Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods. 2014; 11(3): 319-324. doi:10.1038/nmeth.2834
- 2Dissmeyer N, Coux O, Rodriguez MS, Barrio R, the Core Group Members of PROTEOSTASIS. PROTEOSTASIS: a European network to break barriers and integrate science on protein homeostasis. Trends Biochem Sci. 2019; 44(5): 383-387. doi:10.1016/j.tibs.2019.01.007
- 3Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 2008; 319(5865): 916-919. doi:10.1126/science.1141448
- 4Chiti F, Dobson CM. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem. 2017; 86: 8627-8668. doi:10.1146/annurev-biochem-061516-045115
- 5Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, Ciechanover A. The ubiquitin-proteasome system and autophagy: coordinated and independent activities. Int J Biochem Cell Biol. 2016; 79: 403-418. doi:10.1016/j.biocel.2016.07.019
- 6Lehtonen S, Sonninen TM, Wojciechowski S, Goldsteins G, Koistinaho J. Dysfunction of cellular proteostasis in Parkinson's disease. Front Neurosci. 2019; 13:457. doi:10.3389/fnins.2019.00457
- 7Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010; 11(11): 777-788. doi:10.1038/nrm2993
- 8Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science. 2016; 353(6294):4354. doi:10.1126/science.aac4354
- 9Zheng Q, Wang X. Autophagy and the ubiquitin-proteasome system in cardiac dysfunction. Panminerva Med. 2010; 52(1): 9-25. https://www.ncbi.nlm.nih.gov/pubmed/20228723
- 10Cromm PM, Crews CM. The proteasome in modern drug discovery: second life of a highly valuable drug target. ACS Cent Sci. 2017; 3(8): 830-838. doi:10.1021/acscentsci.7b00252
- 11Bustamante HA, González AE, Cerda-Troncoso C, et al. Interplay between the autophagy-lysosomal pathway and the ubiquitin-proteasome system: a target for therapeutic development in Alzheimer's disease. Front Cell Neurosci. 2018; 12:126. doi:10.3389/fncel.2018.00126
- 12Luh LM, Scheib U, Juenemann K, Wortmann L, Brands M, Cromm PM. Prey for the proteasome: targeted protein degradation—a medicinal chemist's perspective. Angew Chem Int Ed Engl. 2020; 59(36): 15448-15466. doi:10.1002/anie.202004310
- 13Neklesa TK, Tae HS, Schneekloth AR, et al. Small-molecule hydrophobic tagging-induced degradation of halotag fusion proteins. Nat Chem Biol. 2011; 7(8): 538-543. doi:10.1038/nchembio.597
- 14Schreiber SL. The rise of molecular glues. Cell. 2021; 184(1): 3-9. doi:10.1016/j.cell.2020.12.020
- 15Dong G, Ding Y, He S, Sheng C. Molecular glues for targeted protein degradation: from serendipity to rational discovery. J Med Chem. 2021; 64(15): 10606-10620. doi:10.1021/acs.jmedchem.1c00895
- 16Bond MJ, Crews CM. Proteolysis targeting chimeras (protacs) come of age: entering the third decade of targeted protein degradation. RSC Chem Biol. 2021; 2(3): 725-742. doi:10.1039/d1cb00011j
- 17Toure M, Crews CM. Small-molecule protacs: new approaches to protein degradation. Angew Chem Int Ed Engl. 2016; 55(6): 1966-19973. doi:10.1002/anie.201507978
- 18Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the skp1-cullin-f box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A. 2001; 98(15): 8554-8559. doi:10.1073/pnas.141230798
- 19Schneekloth AR, Pucheault M, Tae HS, Crews CM. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem. 2008; 18(22): 5904-5908. doi:10.1016/j.bmcl.2008.07.114
- 20Chamberlain PP, Hamann LG. Development of targeted protein degradation therapeutics. Nat Chem Biol. 2019; 15(10): 937-944. doi:10.1038/s41589-019-0362-y
- 21Mullard A. Targeted protein degraders crowd into the clinic. Nat Rev Drug Discov. 2021; 20(4): 247-250. doi:10.1038/d41573-021-00052-4
- 22He Y, Koch R, Budamagunta V, et al. Dt2216-a bcl-xl-specific degrader is highly active against bcl-xl-dependent t cell lymphomas. J Hematol Oncol. 2020; 13(1): 95. doi:10.1186/s13045-020-00928-9
- 23Zeng S, Huang W, Zheng X, et al. Proteolysis targeting chimera (protac) in drug discovery paradigm: recent progress and future challenges. Eur J Med Chem. 2021; 210:210112981. doi:10.1016/j.ejmech.2020.112981
- 24Paiva SL, Crews CM. Targeted protein degradation: elements of protac design. Curr Opin Chem Biol. 2019; 50: 111-119. doi:10.1016/j.cbpa.2019.02.022
- 25Ottis P, Crews CM. Proteolysis-targeting chimeras: induced protein degradation as a therapeutic strategy. ACS Chem Biol. 2017; 12(4): 892-898. doi:10.1021/acschembio.6b01068
- 26Churcher I. Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones? J Med Chem. 2018; 61(2): 444-452. doi:10.1021/acs.jmedchem.7b01272
- 27Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 2017; 16(2): 101-114. doi:10.1038/nrd.2016.211
- 28Farnaby W, Koegl M, McConnell DB, Ciulli A. Transforming targeted cancer therapy with protacs: a forward-looking perspective. Curr Opin Pharmacol. 2021; 57: 57175-57183. doi:10.1016/j.coph.2021.02.009
- 29Dale B, Cheng M, Park KS, Kaniskan HÜ, Xiong Y, Jin J. Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer. 2021; 21: 638-654. doi:10.1038/s41568-021-00365-x
- 30Tomoshige S, Ishikawa M. Protacs and other chemical protein degradation technologies for the treatment of neurodegenerative disorders. Angew Chem Int Ed Engl. 2021; 60(7): 3346-3354. doi:10.1002/anie.202004746
- 31Hu B, Zhou Y, Sun D, et al. Protacs: new method to degrade transcription regulating proteins. Eur J Med Chem. 2020; 207:207112698. doi:10.1016/j.ejmech.2020.112698
- 32Samarasinghe KTG, Crews CM. Targeted protein degradation: a promise for undruggable proteins. Cell Chem Biol. 2021; 28(7): 934-951. doi:10.1016/j.chembiol.2021.04.011
- 33Crew AP, Raina K, Dong H, et al. Identification and characterization of von hippel-lindau-recruiting proteolysis targeting chimeras (protacs) of tank-binding kinase 1. J Med Chem. 2018; 61(2): 583-598. doi:10.1021/acs.jmedchem.7b00635
- 34Gadd MS, Testa A, Lucas X, et al. Structural basis of protac cooperative recognition for selective protein degradation. Nat Chem Biol. 2017; 13(5): 514-521. doi:10.1038/nchembio.2329
- 35Wurz RP, Dellamaggiore K, Dou H, et al. A "click chemistry platform" for the rapid synthesis of bispecific molecules for inducing protein degradation. J Med Chem. 2018; 61(2): 453-461. doi:10.1021/acs.jmedchem.6b01781
- 36Bemis TA, La Clair JJ, Burkart MD. Traceless staudinger ligation enabled parallel synthesis of proteolysis targeting chimera linker variants. Chem Commun (Camb). 2021; 57(8): 1026-1029. doi:10.1039/d0cc05395c
- 37Hayhow TG, Borrows R, Diène CR, et al. A buchwald-hartwig protocol to enable rapid linker exploration of cereblon e3-ligase protacs. Chemistry. 2020; 26(70): 16818-16823. doi:10.1002/chem.202003137
- 38Wang B, Liu J, Tandon I, et al. Development of mdm2 degraders based on ligands derived from ugi reactions: lessons and discoveries. Eur J Med Chem. 2021; 219:219113425. doi:10.1016/j.ejmech.2021.113425
- 39Krajcovicova S, Jorda R, Hendrychova D, Krystof V, Soural M. Solid-phase synthesis for thalidomide-based proteolysis-targeting chimeras (protac). Chem Commun (Camb). 2019; 55(7): 929-932. doi:10.1039/c8cc08716d
- 40Jaime-Figueroa S, Buhimschi AD, Toure M, Hines J. Crews C M. Design, synthesis and biological evaluation of proteolysis targeting chimeras (protacs) as a btk degraders with improved pharmacokinetic properties. Bioorg Med Chem Lett. 2020; 30(3):126877. doi:10.1016/j.bmcl.2019.126877
- 41Li Y, Zhang S, Zhang J, et al. Exploring the protac degron candidates: Obhsa with different side chains as novel selective estrogen receptor degraders (serds). Eur J Med Chem. 2019; 172: 17248-17261. doi:10.1016/j.ejmech.2019.03.058
- 42Lai AC, Toure M, Hellerschmied D, et al. Modular protac design for the degradation of oncogenic bcr-abl. Angew Chem Int Ed. 2016; 55(2): 807-810. doi:10.1002/anie.201507634
- 43Smith BE, Wang SL, Jaime-Figueroa S, et al. Differential protac substrate specificity dictated by orientation of recruited e3 ligase. Nat Comm. 2019; 10(1): 131. doi:10.1038/s41467-018-08027-7
- 44Smalley JP, Adams GE, Millard CJ, et al. Protac-mediated degradation of class i histone deacetylase enzymes in corepressor complexes. Chem Commun (Camb). 2020; 56(32): 4476-4479. doi:10.1039/d0cc01485k
- 45Cheng J, Li Y, Wang X, Dong G, Sheng C. Discovery of novel pdedelta degraders for the treatment of kras mutant colorectal cancer. J Med Chem. 2020; 63(14): 7892-7905. doi:10.1021/acs.jmedchem.0c00929
- 46Shi C, Zhang H, Wang P, et al. Protac induced-bet protein degradation exhibits potent anti-osteosarcoma activity by triggering apoptosis. Cell Death Dis. 2019; 10(11): 815. doi:10.1038/s41419-019-2022-2
- 47Chan KH, Zengerle M, Testa A, Ciulli A. Impact of target warhead and linkage vector on inducing protein degradation: comparison of bromodomain and extra-terminal (bet) degraders derived from triazolodiazepine (jq1) and tetrahydroquinoline (i-bet726) bet inhibitor scaffolds. J Med Chem. 2018; 61(2): 504-513. doi:10.1021/acs.jmedchem.6b01912
- 48Zheng M, Huo J, Gu X, et al. Rational design and synthesis of novel dual protacs for simultaneous degradation of egfr and parp. J Med Chem. 2021; 64(11): 7839-7852. doi:10.1021/acs.jmedchem.1c00649
- 49Sutanto F, Konstantinidou M, Domling A. Covalent inhibitors: a rational approach to drug discovery. RSC Med Chem. 2020; 11(8): 876-884. doi:10.1039/d0md00154f
- 50Zeng M, Xiong Y, Safaee N, et al. Exploring targeted degradation strategy for oncogenic kras(g12c). Cell Chem Biol. 2020; 27(1): 19-31. doi:10.1016/j.chembiol.2019.12.006
- 51Zi F, Yu L, Shi Q, Tang A, Cheng J. Ibrutinib in cll/sll: from bench to bedside (review). Oncol Rep. 2019; 42(6): 2213-2227. doi:10.3892/or.2019.7364
- 52Buhimschi AD, Armstrong HA, Toure M, et al. Targeting the c481s ibrutinib-resistance mutation in Bruton's tyrosine kinase using protac-mediated degradation. Biochemistry. 2018; 57(26): 3564-3575. doi:10.1021/acs.biochem.8b00391
- 53Tinworth CP, Lithgow H, Dittus L, et al. Protac-mediated degradation of Bruton's tyrosine kinase is inhibited by covalent binding. ACS Chem Biol. 2019; 14(3): 342-347. doi:10.1021/acschembio.8b01094
- 54Han X, Zhao L, Xiang W, et al. Discovery of highly potent and efficient protac degraders of androgen receptor (ar) by employing weak binding affinity vhl e3 ligase ligands. J Med Chem. 2019; 62(24): 11218-11231. doi:10.1021/acs.jmedchem.9b01393
- 55Uehara T, Minoshima Y, Sagane K, et al. Selective degradation of splicing factor caper alpha by anticancer sulfonamides. Nat Chem Biol. 2017; 13(6): 675-680. doi:10.1038/nchembio.2363
- 56Han T, Goralski M, Gaskill N, et al. Anticancer sulfonamides target splicing by inducing rbm39 degradation via recruitment to dcaf15. Science. 2017; 356(6336), doi:10.1126/science.aal3755
- 57Bussiere DE, Xie L, Srinivas H, et al. Structural basis of indisulam-mediated rbm39 recruitment to dcaf15 e3 ligase complex. Nat Chem Biol. 2020; 16(1): 15-23. doi:10.1038/s41589-019-0411-6
- 58Faust TB, Yoon H, Nowak RP, et al. Structural complementarity facilitates e7820-mediated degradation of rbm39 by dcaf15. Nat Chem Biol. 2020; 16(1): 7-14. doi:10.1038/s41589-019-0378-3
- 59Du X, Volkov OA, Czerwinski RM, et al. Structural basis and kinetic pathway of rbm39 recruitment to dcaf15 by a sulfonamide molecular glue e7820. Structure. 2019; 27(11): 1625-1635. doi:10.1016/j.str.2019.10.005
- 60Li M, Mi D, Pei H, et al. In vivo target protein degradation induced by protacs based on e3 ligase dcaf15. Signal Transduct Target Ther. 2020; 5(3): 1032-1034. doi:10.1038/s41392-020-00245-0
- 61Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer. 2014; 14(12): 801-814. doi:10.1038/nrc3846
- 62Ohoka N, Tsuji G, Shoda T, et al. Development of small molecule chimeras that recruit ahr e3 ligase to target proteins. ACS Chem Biol. 2019; 14(12): 2822-2832. doi:10.1021/acschembio.9b00704
- 63Ward CC, Kleinman JI, Brittain SM, et al. Covalent ligand screening uncovers a rnf4 e3 ligase recruiter for targeted protein degradation applications. ACS Chem Biol. 2019; 14(11): 2430-2440. doi:10.1021/acschembio.8b01083
- 64Spradlin JN, Hu X, Ward CC, et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat Chem Biol. 2019; 15(7): 747-755. doi:10.1038/s41589-019-0304-8
- 65Luo M, Spradlin JN, Boike L, et al. Chemoproteomics-enabled discovery of covalent rnf114-based degraders that mimic natural product function. Cell Chem Biol. 2021; 28(4): 559-566. doi:10.1016/j.chembiol.2021.01.005
- 66Tong B, Luo M, Xie Y, Spradlin J, Nomura D. Targeted protein degradation via a covalent reversible degrader based on bardoxolone. ChemRxiv. 2020. doi:10.26434/chemrxiv.12055935
- 67Lee S, Hu L. Nrf2 activation through the inhibition of keap1-nrf2 protein-protein interaction. Med Chem Res. 2020; 29(5): 846-867. doi:10.1007/s00044-020-02539-y
- 68Martín-Acosta P, Xiao X. Protacs to address the challenges facing small molecule inhibitors. Eur J Med Chem. 2021; 210:210112993. doi:10.1016/j.ejmech.2020.112993
- 69Wang X, Feng S, Fan J, Li X, Wen Q, Luo N. New strategy for renal fibrosis: targeting smad3 proteins for ubiquitination and degradation. Biochem Pharmacol. 2016; 116: 116200-116209. doi:10.1016/j.bcp.2016.07.017
- 70Bemis TA, La Clair JJ, Burkart MD. Unraveling the role of linker design in proteolysis targeting chimeras. J Med Chem. 2021; 64: 8042-8052. doi:10.1021/acs.jmedchem.1c00482
- 71Maple HJ, Clayden N, Baron A, Stacey C, Felix R. Developing degraders: principles and perspectives on design and chemical space. MedChemComm. 2019; 10(10): 1755-1764. doi:10.1039/c9md00272c
- 72Chen L, Chen Y, Zhang C, et al. Discovery of first-in-class potent and selective tropomyosin receptor kinase degraders. J Med Chem. 2020; 63(23): 14562-14575. doi:10.1021/acs.jmedchem.0c01342
- 73Izzo A, Schneider R. The role of linker histone h1 modifications in the regulation of gene expression and chromatin dynamics. Biochim Biophys Acta. 2016; 1859(3): 486-495. doi:10.1016/j.bbagrm.2015.09.003
- 74Vagner J, Handl HL, Monguchi Y, et al. Rigid linkers for bioactive peptides. Bioconjug Chem. 2006; 17(6): 1545-1550. doi:10.1021/bc060154p
- 75Potjewyd F, Turner AW, Beri J, et al. Degradation of polycomb repressive complex 2 with an eed-targeted bivalent chemical degrader. Cell Chem Biol. 2020; 27(1): 47-56. doi:10.1016/j.chembiol.2019.11.006
- 76Han X, Wang C, Qin C, et al. Discovery of ard-69 as a highly potent proteolysis targeting chimera (protac) degrader of androgen receptor (ar) for the treatment of prostate cancer. J Med Chem. 2019; 62(2): 941-964. doi:10.1021/acs.jmedchem.8b01631
- 77Wang M, Lu J, Wang M, Yang CY, Wang S. Discovery of shp2-d26 as a first, potent, and effective protac degrader of shp2 protein. J Med Chem. 2020; 63(14): 7510-7528. doi:10.1021/acs.jmedchem.0c00471
- 78Jiang X, Hao X, Jing L, et al. Recent applications of click chemistry in drug discovery. Expert Opin Drug Discov. 2019; 14(8): 779-789. doi:10.1080/17460441.2019.1614910
- 79Meanwell NA. Synopsis of some recent tactical application of bioisosteres in drug design. J Med Chem. 2011; 54(8): 2529-2591. doi:10.1021/jm1013693
- 80Liu H, Sun R, Ren C, Qiu X, Yang X, Jiang B. Construction of an imid-based azide library as a kit for protac research. Org Biomol Chem. 2021; 19(1): 166-170. doi:10.1039/d0ob02120b
- 81Gao H, Wu Y, Sun Y, Yang Y, Zhou G, Rao Y. Design, synthesis, and evaluation of highly potent fak-targeting protacs. ACS Med Chem Lett. 2020; 11(10): 1855-1862. doi:10.1021/acsmedchemlett.9b00372
- 82Gao H, Zheng C, Du J, et al. Fak-targeting protac as a chemical tool for the investigation of non-enzymatic fak function in mice. Protein Cell. 2020; 11(7): 534-539. doi:10.1007/s13238-020-00732-8
- 83Cromm PM, Samarasinghe KTG, Hines J, Crews CM. Addressing kinase-independent functions of fak via protac-mediated degradation. J Am Chem Soc. 2018; 140(49): 17019-17026. doi:10.1021/jacs.8b08008
- 84Testa A, Hughes SJ, Lucas X, Wright JE, Ciulli A. Structure-based design of a macrocyclic PROTAC. Angew Chem Int Ed. 2020; 59(4): 1727-1734. doi:10.1002/anie.201914396
- 85Tomoshige S, Ishikawa M. In vivo synthetic chemistry of proteolysis targeting chimeras (protacs). Bioorg Med Chem. 2021; 41:41116221. doi:10.1016/j.bmc.2021.116221
- 86Lebraud H, Wright DJ, Johnson CN, Heightman TD. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent Sci. 2016; 2(12): 927-934. doi:10.1021/acscentsci.6b00280
- 87Liu J, Chen H, Kaniskan HÜ, et al. Tf-protacs enable targeted degradation of transcription factors. J Am Chem Soc. 2021; 143(23): 8902-8910. doi:10.1021/jacs.1c03852
- 88Teichmann E, Hecht S. Shining a light on proteolysis targeting chimeras. ACS Cent Sci. 2019; 5(10): 1645-1647. doi:10.1021/acscentsci.9b00955
- 89Reynders M, Trauner D. Optical control of targeted protein degradation. Cell Chem Biol. 2021; 28: 969-986. doi:10.1016/j.chembiol.2021.05.010
- 90Klán P, Šolomek T, Bochet CG, et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem Rev. 2013; 113(1): 119-191. doi:10.1021/cr300177k
- 91Pfaff P, Samarasinghe KTG, Crews CM, Carreira EM. Reversible spatiotemporal control of induced protein degradation by bistable photoprotacs. ACS Cent Sci. 2019; 5(10): 1682-1690. doi:10.1021/acscentsci.9b00713
- 92Farnaby W, Koegl M, Roy MJ, et al. Baf complex vulnerabilities in cancer demonstrated via structure-based protac design. Nat Chem Biol. 2019; 15(7): 672-680. doi:10.1038/s41589-019-0294-6
- 93Nowak RP, DeAngelo SL, Buckley D, et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat Chem Biol. 2018; 14(7): 706-714. doi:10.1038/s41589-018-0055-y
- 94Drummond ML, Williams CI. In silico modeling of protac-mediated ternary complexes: validation and application. J Chem Inf Model. 2019; 59(4): 1634-1644. doi:10.1021/acs.jcim.8b00872
- 95Drummond ML, Henry A, Li H, Williams CI. Improved accuracy for modeling protac-mediated ternary complex formation and targeted protein degradation via new in silico methodologies. J Chem Inf Model. 2020; 60(10): 5234-5254. doi:10.1021/acs.jcim.0c00897
- 96Zaidman D, Prilusky J, London N. Prosettac: Rosetta based modeling of protac mediated ternary complexes. J Chem Inf Model. 2020; 60(10): 4894-4903. doi:10.1021/acs.jcim.0c00589
- 97Imrie F, Bradley AR, van der Schaar M, Deane CM. Deep generative models for 3d linker design. J Chem Inf Model. 2020. 2020; 60(4): 1983-1995. doi:10.1021/acs.jcim.9b01120
- 98Pérez-Benito L, Henry A, Matsoukas MT, et al. The size matters? A computational tool to design bivalent ligands. Bioinformatics. 2018; 34(22): 3857-3863. doi:10.1093/bioinformatics/bty422
- 99Bai N, Miller SA, Andrianov GV, Yates M, Kirubakaran P, Karanicolas J. Rationalizing protac-mediated ternary complex formation using rosetta. J Chem Inf Model. 2021; 61(3): 1368-1382. doi:10.1021/acs.jcim.0c01451
- 100Vannam R, Sayilgan J, Ojeda S, et al. Targeted degradation of the enhancer lysine acetyltransferases cbp and p300. Cell Chem Biol. 2021; 28(4): 503-514. doi:10.1016/j.chembiol.2020.12.004
- 101Cantrill C, Chaturvedi P, Rynn C, Petrig Schaffland J, Walter I, Wittwer MB. Fundamental aspects of dmpk optimization of targeted protein degraders. Drug Discov Today. 2020; 25(6): 969-982. doi:10.1016/j.drudis.2020.03.012
- 102Edmondson SD, Yang B, Fallan C. Proteolysis targeting chimeras (protacs) in 'beyond rule-of-five' chemical space: recent progress and future challenges. Bioorg Med Chem Lett. 2019; 29(13): 1555-1564. doi:10.1016/j.bmcl.2019.04.030
- 103Pike A, Williamson B, Harlfinger S, Martin S, McGinnity DF. Optimising proteolysis-targeting chimeras (protacs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug Discov Today. 2020; 25: 1793-1800. doi:10.1016/j.drudis.2020.07.013
- 104Ermondi G, Garcia-Jimenez D, Caron G. Protacs and building blocks: the 2d chemical space in very early drug discovery. Molecules. 2021; 26(3), doi:10.3390/molecules26030672
- 105Rossi Sebastiano M, Doak BC, Backlund M, et al. Impact of dynamically exposed polarity on permeability and solubility of chameleonic drugs beyond the rule of 5. J Med Chem. 2018; 61(9): 4189-4202. doi:10.1021/acs.jmedchem.8b00347
- 106Ogino Y, Tanaka M, Shimozawa T, Asahi T. Lc-ms/ms and chiroptical spectroscopic analyses of multidimensional metabolic systems of chiral thalidomide and its derivatives. Chirality. 2017; 29(6): 282-293. doi:10.1002/chir.22683
- 107Hoffmann M, Kasserra C, Reyes J, et al. Absorption, metabolism and excretion of [14c]pomalidomide in humans following oral administration. Cancer Chemother Pharmacol. 2013; 71(2): 489-501. doi:10.1007/s00280-012-2040-6
- 108Schneekloth AR, Pucheault M, Tae HS, Crews CM. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett. 2008; 18(22): 5904-5908. doi:10.1016/j.bmcl.2008.07.114
- 109Cardote TAF, Gadd MS, Ciulli A. Crystal structure of the cul2-rbx1-elobc-vhl ubiquitin ligase complex. Structure. 2017; 25(6): 901-911. doi:10.1016/j.str.2017.04.009
- 110Kaelin WG Jr. The von hippel-lindau tumour suppressor protein: O-2 sensing and cancer. Nat Rev Cancer. 2008; 8(11): 865-873. doi:10.1038/nrc2502
- 111Raina K, Crews CM. Targeted protein knockdown using small molecule degraders. Curr Opin Chem Biol. 2017; 39: 3946-3953. doi:10.1016/j.cbpa.2017.05.016
- 112Galdeano C, Gadd MS, Soares P, et al. Structure-guided design and optimization of small molecules targeting the protein protein interaction between the von hippel- lindau (vhl) e3 ubiquitin ligase and the hypoxia inducible factor (hif) alpha subunit with in vitro nanomolar affinities. J Med Chem. 2014; 57(20): 8657-8663. doi:10.1021/jm5011258
- 113Buckley DL, Van Molle I, Gareiss PC, et al. Targeting the von hippel-lindau e3 ubiquitin ligase using small molecules to disrupt the vhl/hif-1 alpha interaction. J Am Chem Soc. 2012; 134(10): 4465-4468. doi:10.1021/ja209924v
- 114Mohammad HP, Barbash O, Creasy CL. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med. 2019; 25(3): 403-418. doi:10.1038/s41591-019-0376-8
- 115Raina K, Lu J, Qian Y, et al. Protac-induced bet protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. 2016; 113(26): 7124-7129. doi:10.1073/pnas.1521738113
- 116Zengerle M, Chan K-H, Ciulli A. Selective small molecule induced degradation of the bet bromodomain protein brd4. ACS Chem Biol. 2015; 10(8): 1770-1777. doi:10.1021/acschembio.5b00216
- 117Heinlein CA, Chang CS. Androgen receptor in prostate cancer. Endocr Rev. 2004; 25(2): 276-308. doi:10.1210/er.2002-0032
- 118Kahn B, Collazo J, Kyprianou N. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int J Biol Sci. 2014; 10(6): 588-595. doi:10.7150/ijbs.8671
- 119Giguere V, Yang N, Segui P, Evans RM. Identification of a new class of steroid hormone receptors. Nature. 1988; 331(6151): 91-94. doi:10.1038/331091a0
- 120Bondeson DP, Mares A, Smith IE, et al. Catalytic in vivo protein knockdown by small-molecule protacs. Nat Chem Biol. 2015; 11(8): 611-U120. doi:10.1038/nchembio.1858
- 121Peng L, Zhang Z, Lei C, et al. Identification of new small molecule inducers of estrogen-related receptor alpha (err alpha) degradation. ACS Med Chem Lett. 2019; 10(5): 767-772. doi:10.1021/acsmedchemlett.9b00025
- 122Luo HJ, Luo P, Yang GL, Peng QL, Liu MR, Tu G. G-protein coupled estrogen receptor 1 expression in primary breast cancers and its correlation with clinicopathological variables. J Breast Cancer. 2011; 14(3): 185-190. doi:10.4048/jbc.2011.14.3.185
- 123Mason KD, Carpinelli MR, Fletcher JI, et al. Programmed anuclear cell death delimits platelet life span. Cell. 2007; 128(6): 1173-1186. doi:10.1016/j.cell.2007.01.037
- 124Khan S, Zhang X, Lv D, et al. A selective bcl-x-l protac degrader achieves safe and potent antitumor activity. Nat Med. 2019; 25(12): 1938-1947. doi:10.1038/s41591-019-0668-z
- 125Couturier-Maillard A, Secher T, Rehman A, et al. Nod2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013; 123(2): 700-711. doi:10.1172/jci62236
- 126Thiede C, Steudel C, Mohr B, et al. Analysis of flt3-activating mutations in 979 patients with acute myelogenous leukemia: association with fab subtypes and identification of subgroups with poor prognosis. Blood. 2002; 99(12): 4326-4335. doi:10.1182/blood.V99.12.4326
- 127Grunwald MR, Levis MJ. Flt3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance. Int J Hematol. 2013; 97(6): 683-694. doi:10.1007/s12185-013-1334-8
- 128Burslem GM, Song J, Chen X, Hines J, Crews CM. Enhancing antiproliferative activity and selectivity of a flt-3 inhibitor by proteolysis targeting chimera conversion. J Am Chem Soc. 2018; 140(48): 16428-16432. doi:10.1021/jacs.8b10320
- 129Patra MC, Choi S. Recent progress in the molecular recognition and therapeutic importance of interleukin-1 receptor-associated kinase 4. Molecules. 2016; 21(11), doi:10.3390/molecules21111529
- 130Nunes J, McGonagle GA, Eden J, et al. Targeting irak4 for degradation with protacs. ACS Med Chem Lett. 2019; 10(7): 1081-1085. doi:10.1021/acsmedchemlett.9b00219
- 131Lee BY, Timpson P, Horvath LG, Daly RJ. Fak signaling in human cancer as a target for therapeutics. Pharmacol Ther. 2015; 146: 146132-146149. doi:10.1016/j.pharmthera.2014.10.001
- 132Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of ikaros proteins. Science. 2014; 343(6168): 305-309. doi:10.1126/science.1244917
- 133Krönke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of ikzf1 and ikzf3 in multiple myeloma cells. Science. 2014; 343(6168): 301-305. doi:10.1126/science.1244851
- 134Fischer ES, Böhm K, Lydeard JR, et al. Structure of the ddbi-crbn e3 ubiquitin ligase in complex with thalidomide. Nature. 2014; 512(7512): 49-53. doi:10.1038/nature13527
- 135Neklesa T, Snyder LB, Willard RR, et al. Arv-110: an oral androgen receptor protac degrader for prostate cancer. J Clin Oncol. 2019; 37(7):259. doi:10.1200/JCO.2019.37.7_suppl.259
- 136Lu J, Qian Y, Altieri M, et al. Hijacking the e3 ubiquitin ligase cereblon to efficiently target brd4. Chem Biol. 2015; 22(6): 755-763. doi:10.1016/j.chembiol.2015.05.009
- 137Qin C, Hu Y, Zhou B, et al. Discovery of qca570 as an exceptionally potent and efficacious proteolysis targeting chimera (protac) degrader of the bromodomain and extra-terminal (bet) proteins capable of inducing complete and durable tumor regression. J Med Chem. 2018; 61(15): 6685-6704. doi:10.1021/acs.jmedchem.8b00506
- 138Davis RE, Ngo VN, Lenz G, et al. Chronic active b-cell-receptor signalling in diffuse large b-cell lymphoma. Nature. 2010; 463(7277): 88-92.
- 139Zorba A, Nguyen C, Xu Y, et al. Delineating the role of cooperativity in the design of potent protacs for btk. Proc Natl Acad Sci USA. 2018; 115(31): E7285-E7292. doi:10.1073/pnas.1803662115
- 140Roskoski R Jr. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res. 2019; 139: 139471-139488. doi:10.1016/j.phrs.2018.11.035
- 141Condorelli R, Spring L, O'Shaughnessy J, et al. Polyclonal rb1 mutations and acquired resistance to cdk 4/6 inhibitors in patients with metastatic breast cancer. Ann Oncol. 2018; 29(3): 640-645. doi:10.1093/annonc/mdx784
- 142Wei M, Zhao R, Cao Y, et al. First orally bioavailable prodrug of proteolysis targeting chimera (protac) degrades cyclin-dependent kinases 2/4/6 in vivo. Eur J Med Chem. 2021; 209:112903. doi:10.1016/j.ejmech.2020.112903
- 143Wagner AJ, Banerji U, Mahipal A, et al. Phase i trial of the human double minute 2 inhibitor mk-8242 in patients with advanced solid tumors. J Clin Oncol. 2017; 35(12): 1304-1311. doi:10.1200/jco.2016.70.7117
- 144Iancu-Rubin C, Mosoyan G, Glenn K, Gordon RE, Nichols GL, Hoffman R. Activation of p53 by the mdm2 inhibitor rg7112 impairs thrombopoiesis. Exp Hematol. 2014; 42(2): 137-145. doi:10.1016/j.exphem.2013.11.012
- 145Li Y, Yang J, Aguilar A, et al. Discovery of md-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J Med Chem. 2019; 62(2): 448-466. doi:10.1021/acs.jmedchem.8b00909
- 146Kojima Y, Sasaki S, Shinoura H, Hayashi Y, Tsujimoto G, Kohri K. Quantification of alpha1-adrenoceptor subtypes by real-time RT-PCR and correlation with age and prostate volume in benign prostatic hyperplasia patients. Prostate. 2006; 66(7): 761-767. doi:10.1002/pros.20399
- 147Li Z, Lin Y, Song H, et al. First small-molecule protacs for g protein-coupled receptors: inducing alpha(1a)-adrenergic receptor degradation. Acta Pharm Sin B. 2020; 10(9): 1669-1679. doi:10.1016/j.apsb.2020.01.014
- 148Jellinger KA, Attems J. Prevalence and impact of vascular and Alzheimer pathologies in lewy body disease. Acta Neuropathol. 2008; 115(4): 427-436. doi:10.1007/s00401-008-0347-5
- 149Lu M, Liu T, Jiao Q, et al. Discovery of a keap1-dependent peptide protac to knockdown tau by ubiquitination-proteasome degradation pathway. Eur J Med Chem. 2018; 146: 146251-146259. doi:10.1016/j.ejmech.2018.01.063
- 150Silva MC, Ferguson FM, Cai Q, et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife. 2019; 8, doi:10.7554/eLife.45457
- 151Berthelet J, Dubrez L. Regulation of apoptosis by inhibitors of apoptosis (iaps). Cells. 2013; 2(1): 163-187. doi:10.3390/cells2010163
- 152Deveraux QL, Reed TC. Iap family proteins—suppressors of apoptosis. Genes Dev. 1999; 13(3): 239-252. doi:10.1101/gad.13.3.239
- 153Che X, Yang D, Zong H, et al. Nuclear ciap1 overexpression is a tumor stage- and grade-independent predictor of poor prognosis in human bladder cancer patients. Urol Oncol. 2012; 30(4): 450-456. doi:10.1016/j.urolonc.2010.12.016
- 154Itoh Y, Ishikawa M, Naito M, Hashimoto Y. Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J Am Chem Soc. 2010; 132(16): 5820-5826. doi:10.1021/ja100691p
- 155Itoh Y, Ishikawa M, Kitaguchi R, Sato S, Naito M, Hashimoto Y. Development of target protein-selective degradation inducer for protein knockdown. Bioor Med Chem. 2011; 19(10): 3229-3241. doi:10.1016/j.bmc.2011.03.057
- 156Ohoka N, Okuhira K, Ito M, et al. In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (iap)-dependent protein erasers (snipers). J Biol Chem. 2017; 292(11): 4556-4570. doi:10.1074/jbc.M116.768853
- 157Ohoka N, Morita Y, Nagai K, et al. Derivatization of inhibitor of apoptosis protein (iap) ligands yields improved inducers of estrogen receptor degradation. J Biol Chem. 2018; 293(18): 6776-6790. doi:10.1074/jbc.RA117.001091
- 158Shimokawa K, Shibata N, Sameshima T, et al. Targeting the allosteric site of oncoprotein bcr-abl as an alternative strategy for effective target protein degradation. ACS Med Chem Lett. 2017; 8(10): 1042-1047. doi:10.1021/acsmedchemlett.7b00247
- 159Shibata N, Nagai K, Morita Y, et al. Development of protein degradation inducers of androgen receptor by conjugation of androgen receptor ligands and inhibitor of apoptosis protein ligands. J Med Chem. 2018; 61(2): 543-575. doi:10.1021/acs.jmedchem.7b00168
- 160Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of mdm2. Science. 2004; 303(5659): 844-848. doi:10.1126/science.1092472
- 161Hines J, Lartigue S, Dong H, Qian Y, Crews CM. Mdm2-recruiting protac offers superior, synergistic antiproliferative activity via simultaneous degradation of brd4 and stabilization of p53. Cancer Res. 2019; 79(1): 251-262. doi:10.1158/0008-5472.Can-18-2918
- 162Jagtap P, Szabo C. Poly(adp-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov. 2005; 4(5): 421-440. doi:10.1038/nrd1718
- 163Zhao Q, Lan T, Su S, Rao Y. Induction of apoptosis in mda-mb-231 breast cancer cells by a parp1-targeting protac small molecule. Chem Comm. 2019; 55(3): 369-372. doi:10.1039/c8cc07813k
- 164Morgan CW, Dale IL, Thomas AP, Hunt J, Chin JW. Selective craf inhibition elicits transactivation. J Am Chem Soci. 2021; 143(12): 4600-4606. doi:10.1021/jacs.0c11958
- 165Nalawansha DA, Crews CM. Protacs: an emerging therapeutic modality in precision medicine. Cell Chem Biol. 2020; 27(8): 998-1014. doi:10.1016/j.chembiol.2020.07.020
- 166Zoppi V, Hughes SJ, Maniaci C, et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (protacs) identify vz185 as a potent, fast, and selective von hippel-lindau (vhl) based dual degrader probe of brd9 and brd7. J Med Chem. 2019; 62(2): 699-726. doi:10.1021/acs.jmedchem.8b01413
- 167Burslem GM, Smith BE, Lai AC, et al. The advantages of targeted protein degradation over inhibition: an rtk case study. Cell Chem Biol. 2018; 25(1): 67-77. doi:10.1016/j.chembiol.2017.09.009
- 168Olson CM, Jiang B, Erb MA, et al. Pharmacological perturbation of cdk9 using selective cdk9 inhibition or degradation. Nat Chem Biol. 2018; 14(2): 163-170. doi:10.1038/nchembio.2538
- 169Cuadrado A, Nebreda AR. Mechanisms and functions of p38 mapk signalling. Biochem J. 2010; 429: 429403-429417. doi:10.1042/bj20100323
- 170Carpenter RL, Lo H-W. Stat3 target genes relevant to human cancers. Cancers. 2014; 6(2): 897-925. doi:10.3390/cancers6020897
- 171Bai L, Zhou H, Xu R, et al. A potent and selective small-molecule degrader of stat3 achieves complete tumor regression in vivo. Cancer Cell. 2019; 36(5): 498-511. doi:10.1016/j.ccell.2019.10.002
- 172Donoghue C, Cubillos-Rojas M, Gutierrez-Prat N, et al. Optimal linker length for small molecule protacs that selectively target p38 alpha and p38 beta for degradation. Eur J Med Chem. 2020; 201: 201. doi:10.1016/j.ejmech.2020.112451
- 173Cdk9 regulates neural differentiation and its expression correlates with the differentiation grade of neuroblastoma and pnet tumors. Cancer Biol Ther. 2005; 4(3): 277-281. doi:10.4161/cbt.4.3.1497
- 174Sonawane Y. A, Taylor M. A., Napoleon J. V., Rana S., Contreras J. I., Natarajan A. Cyclin dependent kinase 9 inhibitors for cancer therapy. J Med Chem. 2016; 59(19): 8667-8684. doi:10.1021/acs.jmedchem.6b00150
- 175Parry D, Guzi T, Shanahan F, et al. Dinaciclib (sch 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol Cancer Ther. 2010; 9(8): 2344-2353. doi:10.1158/1535-7163.MCT-10-0324
- 176Su S, Yang Z, Gao H, et al. Potent and preferential degradation of cdk6 via proteolysis targeting chimera degraders. J Med Chem. 2019; 62(16): 7575-7582. doi:10.1021/acs.jmedchem.9b00871
- 177Wang L, Shao X, Zhong T, et al. Discovery of a first-in-class cdk2 selective degrader for aml differentiation therapy. Nat Chem Biol. 2021; 17(5): 567-575. doi:10.1038/s41589-021-00742-5
- 178De Dominici M, Porazzi P, Soliera AR, et al. Targeting cdk6 and bcl2 exploits the "myb addiction" of ph+ acute lymphoblastic leukemia. Cancer Res. 2018; 78(4): 1097-1109. doi:10.1158/0008-5472.Can-17-2644
- 179De Dominici M, Porazzi P, Xiao Y, et al. Selective inhibition of ph-positive all cell growth through kinase-dependent and -independent effects by cdk6-specific protacs. Blood. 2020; 135(18): 1560-1573. doi:10.1182/blood.2019003604
- 180Firestein R, Bass AJ, Kim SY, et al. Cdk8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature. 2008; 455(7212): 547-U60. doi:10.1038/nature07179
- 181Hatcher JM, Wang ES, Johannessen L, Kwiatkowski N, Sim T, Gray NS. Development of highly potent and selective steroidal inhibitors and degraders of cdk8. ACS Med Chem Lett. 2018; 9(6): 540-545. doi:10.1021/acsmedchemlett.8b00011
- 182Gregory GP, Hogg SJ, Kats LM, Vidacs E, Shortt J. Cdk9 inhibition by dinaciclib potently suppresses mcl-1 to induce durable apoptotic responses in aggressive myc-driven b-cell lymphoma in vivo. Leukemia. 2015; 29(6): 1437-1441.
- 183Krystof V, Uldrijan S. Cyclin-dependent kinase inhibitors as anticancer drugs. Curr Drug Targets. 2010; 11(3): 291-302. doi:10.2174/138945010790711950
- 184Robb CM, Contreras JI, Kour S, et al. Chemically induced degradation of cdk9 by a proteolysis targeting chimera (protac). Chem Comm. 2017; 53(54): 7577-7580. doi:10.1039/c7cc03879h
- 185Bian J, Ren J, Li Y, et al. Discovery of wogonin-based protacs against cdk9 and capable of achieving antitumor activity. Bioorg Chem. 2018; 81: 81373-81381. doi:10.1016/j.bioorg.2018.08.028
- 186Blazek D, Kohoutek J, Bartholomeeusen K, et al. The cyclin k/cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Gene Dev. 2011; 25(20): 2158-2172. doi:10.1101/gad.16962311
- 187Jiang B, Gao Y, Che J, et al. Discovery and resistance mechanism of a selective cdk12 degrader. Nat Chem Biol. 2021; 17(6): 675-683. doi:10.1038/s41589-021-00765-y
- 188Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014; 13(9): 673-691. doi:10.1038/nrd4360
- 189Yoon S, Eom GH. Hdac and hdac inhibitor: from cancer to cardiovascular diseases. Chonnam Med J. 2016; 52(1): 1-11. doi:10.4068/cmj.2016.52.1.1
- 190Boyault C, Sadoul K, Pabion M, Khochbin S. Hdac6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene. 2007; 26(37): 5468-5476. doi:10.1038/sj.onc.1210614
- 191Yang K, Song Y, Xie H, et al. Development of the first small molecule histone deacetylase 6 (hdac6) degraders. Bioorg Med Chem Lett. 2018; 28(14): 2493-2497. doi:10.1016/j.bmcl.2018.05.057
- 192Yang H, Lv W, He M, et al. Plasticity in designing protacs for selective and potent degradation of hdac6. Chem Comm. 2019; 55(98): 14848-14851. doi:10.1039/c9cc08509b
- 193Smalley JP, Adams GE, Millard CJ, et al. Protac-mediated degradation of class i histone deacetylase enzymes in corepressor complexes. Chem Comm. 2020; 56(32): 4476-4479. doi:10.1039/d0cc01485k
- 194Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein sir2 is an nad-dependent histone deacetylase. Nature. 2000; 403(6771): 795-800. doi:10.1038/35001622
- 195Schiedel M, Herp D, Hammelmann S, et al. Chemically induced degradation of sirtuin 2 (sirt2) by a proteolysis targeting chimera (protac) based on sirtuin rearranging ligands (sirreals). J Med Chem. 2018; 61(2): 482-491. doi:10.1021/acs.jmedchem.6b01872
- 196Cochran AG, Conery AR, Sims RJ III. Bromodomains: a new target class for drug development. Nat Rev Drug Discov. 2019; 18(8): 609-628. doi:10.1038/s41573-019-0030-7
- 197Kadoch C, Hargreaves DC, Hodges C, et al. Proteomic and bioinformatic analysis of mammalian swi/snf complexes identifies extensive roles in human malignancy. Nat Genet. 2013; 45(6): 592-601. doi:10.1038/ng.2628
- 198Remillard D, Buckley DL, Paulk J, et al. Degradation of the baf complex factor brd9 by heterobifunctional ligands. Angew Chem Inter Ed. 2017; 56(21): 5738-5743. doi:10.1002/anie.201611281
- 199Tsai W-W, Wang Z, Yiu TT, et al. Trim24 links a non-canonical histone signature to breast cancer. Nature. 2010; 468(7326): 927-U320. doi:10.1038/nature09542
- 200Gechijian LN, Buckley DL, Lawlor MA, et al. Functional trim24 degrader via conjugation of ineffectual bromodomain and vhl ligands. Nat Chem Biol. 2018; 14(4): 405-412. doi:10.1038/s41589-018-0010-y
- 201Pophali PA, Patnaik MM. The role of new tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J (Sudbury, Mass.). 2016; 22(1): 40-50. doi:10.1097/ppo.0000000000000165
- 202Yang Y, Gao H, Sun X, et al. Global protac toolbox for degrading bcr-abl overcomes drug-resistant mutants and adverse effects. J Med Chem. 2020; 63(15): 8567-8583. doi:10.1021/acs.jmedchem.0c00967
- 203Lavoie H, Therrien M. Regulation of raf protein kinases in erk signalling. Nat Rev Mol Cell Biol. 2015; 16(5): 281-298. doi:10.1038/nrm3979
- 204Simanshu DK, Nissley DV, McCormick F. Ras proteins and their regulators in human disease. Cell. 2017; 170(1): 17-33. doi:10.1016/j.cell.2017.06.009
- 205Terrell EM, Morrison DK. Ras-mediated activation of the raf family kinases. Cold Spring Harb Perspect Med. 2019; 9(1):a033746. doi:10.1101/cshperspect.a033746
- 206Rajakulendran T, Sahmi M, Lefrançois M, Sicheri F, Therrien M. A dimerization-dependent mechanism drives raf catalytic activation. Nature. 2009; 461(7263): 542-545. doi:10.1038/nature08314
- 207Posternak G, Tang X, Maisonneuve P, et al. Functional characterization of a protac directed against braf mutant v600e. Nat Chem Biol. 2020; 16(11): 1170-1178. doi:10.1038/s41589-020-0609-7
- 208Prior IA, Lewis PD, Mattos C. A comprehensive survey of ras mutations in cancer. Cancer Res. 2012; 72(10): 2457-2467. doi:10.1158/0008-5472.Can-11-2612
- 209Bond MJ, Chu L, Nalawansha DA, Li K, Crews CM. Targeted degradation of oncogenic kras(g12c) by vhl-recruiting protacs. ACS Cent Sci. 2020; 6(8): 1367-1375. doi:10.1021/acscentsci.0c00411
- 210Salami J, Alabi S, Willard RR, et al. Androgen receptor degradation by the proteolysis-targeting chimera arcc-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Comm Biol. 2018; 1: 100. doi:10.1038/s42003-018-0105-8
- 211Woyach JA, Furman RR, Liu TM, et al. Resistance mechanisms for the bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014; 370(24): 2286-2294. doi:10.1056/NEJMoa1400029
- 212Sun Y, Zhao X, Ding N, et al. Protac-induced btk degradation as a novel therapy for mutated btk c481s induced ibrutinib-resistant b-cell malignancies. Cell Res. 2018; 28(7): 779-781. doi:10.1038/s41422-018-0055-1
- 213Sun Y, Ding N, Song Y, et al. Degradation of bruton's tyrosine kinase mutants by protacs for potential treatment of ibrutinib-resistant non-hodgkin lymphomas. Leukemia. 2019; 33(8): 2105-2110. doi:10.1038/s41375-019-0440-x
- 214Kettlewell S, Cabrero P, Nicklin SA, Dow JA, Davies S, Smith GL. Changes of intra-mitochondrial ca2+ in adult ventricular cardiomyocytes examined using a novel fluorescent ca2+ indicator targeted to mitochondria. J Mol Cell Cardiol. 2009; 46(6): 891-901. doi:10.1016/j.yjmcc.2009.02.016
- 215Nabet B, Roberts JM, Buckley DL, et al. The dtag system for immediate and target-specific protein degradation. Nat Chem Biol. 2018; 14(5): 431-441. doi:10.1038/s41589-018-0021-8
- 216An S, Fu L. Small-molecule protacs: an emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018; 36: 36553-36562. doi:10.1016/j.ebiom.2018.09.005
- 217Gabizon R, Shraga A, Gehrtz P, et al. Efficient targeted degradation via reversible and irreversible covalent protacs. J Am Chem Soc. 2020; 142(27): 11734-11742. doi:10.1021/jacs.9b13907
- 218Guo W-H, Qi X, Yu X, et al. Enhancing intracellular accumulation and target engagement of protacs with reversible covalent chemistry. Nat Comm. 2020; 11(1): 4268. doi:10.1038/s41467-020-17997-6
- 219Xue G, Chen J, Liu L, et al. Protein degradation through covalent inhibitor-based protacs. Chem Comm. 2020; 56(10): 1521-1524. doi:10.1039/c9cc08238g
- 220Bondeson DP, Smith BE, Burslem GM, et al. Lessons in protac design from selective degradation with a promiscuous warhead. Cell Chem Biol. 2018; 25(1): 78-87. doi:10.1016/j.chembiol.2017.09.010
- 221Zhang X, Crowley VM, Wucherpfennig TG, Dix MM, Cravatt BF. Electrophilic protacs that degrade nuclear proteins by engaging dcaf16. Nat Chem Biol. 2019; 15(7): 737-746. doi:10.1038/s41589-019-0279-5
- 222Zhang X, Luukkonen LM, Eissler CL, et al. Dcaf11 supports targeted protein degradation by electrophilic proteolysis-targeting chimeras. J Am Chem Soc. 2021; 143(13): 5141-5149. doi:10.1021/jacs.1c00990
- 223Elumalai P, Arunakaran J. Review on molecular and chemopreventive potential of nimbolide in cancer. Genomics Inform. 2014; 12(4): 156-164. doi:10.5808/gi.2014.12.4.156
- 224Leslie PL, Ke H, Zhang Y. The mdm2 ring domain and central acidic domain play distinct roles in mdm2 protein homodimerization and mdm2-mdmx protein heterodimerization. J Biol Chem. 2015; 290(20): 12941-12950. doi:10.1074/jbc.M115.644435
- 225Senft D, Qi J, Ronai ZeA. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 2018; 18(2): 69-88. doi:10.1038/nrc.2017.105
- 226Ishoey M, Chorn S, Singh N, et al. Translation termination factor gspt1 is a phenotypically relevant off-target of heterobifunctional phthalimide degraders. ACS Chem Biol. 2018; 13(3): 553-560. doi:10.1021/acschembio.7b00969
- 227Maniaci C, Hughes SJ, Testa A, et al. Homo-protacs: bivalent small-molecule dimerizers of the vhl e3 ubiquitin ligase to induce self-degradation. Nature Comm. 2017; 8(1): 830. doi:10.1038/s41467-017-00954-1
- 228Steinebach C, Lindner S, Udeshi ND, et al. Homo-protacs for the chemical knockdown of cereblon. ACS Chem Biol. 2018; 13(9): 2771-2782. doi:10.1021/acschembio.8b00693
- 229Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Gene Dev. 1993; 7(7A): 1126-1132. doi:10.1101/gad.7.7a.1126
- 230Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992; 69(7): 1237-1245. doi:10.1016/0092-8674(92)90644-r
- 231He S, Ma J, Fang Y, Liu Y, Sheng C. Homo-protac mediated suicide of mdm2 to treat non-small cell lung cancer. Acta Pharm Sin B. 2021; 11(6): 1617-1628. doi:10.1016/j.apsb.2020.11.022
- 232Girardini M, Maniaci C, Hughes SJ, Testa A, Ciulli A. Cereblon versus vhl: Hijacking e3 ligases against each other using protacs. Bioorg Med Chem. 2019; 27(12): 2466-2479. doi:10.1016/j.bmc.2019.02.048
- 233Steinebach C, Kehm H, Lindner S, et al. Protac-mediated crosstalk between e3 ligases. Chem Comm. 2019; 55(12): 1821-1824. doi:10.1039/c8cc09541h
- 234Schmitt J, Huang S, Goodfellow E, Williams C, Jean-Claude BJ. Design and synthesis of a trifunctional molecular system "programmed" to block epidermal growth factor receptor tyrosine kinase, induce high levels of DNA damage, and inhibit the DNA repair enzyme (poly(adp-ribose) polymerase) in prostate cancer cells. J Med Chem. 2020; 63(11): 5752-5762. doi:10.1021/acs.jmedchem.9b02008
- 235Di Desidero T, Fioravanti A, Orlandi P, et al. Antiproliferative and proapoptotic activity of sunitinib on endothelial and anaplastic thyroid cancer cells via inhibition of akt and erk1/2 phosphorylation and by down-regulation of cyclin-d1. J Clin Endocrinol Metab. 2013; 98(9): 1465-1473. doi:10.1210/jc.2013-1364
- 236Hines J, Gough JD, Corson TW, Crews CM. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoprotacs. Proc Natl Acad Sci U S A. 2013; 110(22): 8942-8947. doi:10.1073/pnas.1217206110
- 237Delacour Q, Li C, Plamont MA, et al. Light-activated proteolysis for the spatiotemporal control of proteins. ACS Chem Biol. 2015; 10(7): 1643-1647. doi:10.1021/acschembio.5b00069
- 238Mayer G, Heckel A. Biologically active molecules with a "light switch". Angew Chem Int Ed. 2006; 45(30): 4900-4921. doi:10.1002/anie.200600387
- 239Naro Y, Darrah K, Deiters A. Optical control of small molecule-induced protein degradation. J Am Chem Soc. 2020; 142(5): 2193-2197. doi:10.1021/jacs.9b12718
- 240Kounde CS, Shchepinova MM, Saunders CN, et al. A caged e3 ligase ligand for protac-mediated protein degradation with light. Chem Commun (Camb). 2020; 56(41): 5532-5535. doi:10.1039/d0cc00523a
- 241Xue G, Wang K, Zhou D, Zhong H, Pan Z. Light-induced protein degradation with photocaged protacs. J Am Chem Soc. 2019; 141(46): 18370-18374. doi:10.1021/jacs.9b06422
- 242Zhou B, Hu J, Xu F, et al. Discovery of a small-molecule degrader of bromodomain and extra-terminal (bet) proteins with picomolar cellular potencies and capable of achieving tumor regression. J Med Chem. 2018; 61(2): 462-481. doi:10.1021/acs.jmedchem.6b01816
- 243Reynders M, Matsuura BS, Bérouti M, et al. Photacs enable optical control of protein degradation. Sci Adv. 2020; 6(8):eaay5064. doi:10.1126/sciadv.aay5064
- 244Yang CY, Qin C, Bai L, Wang S. Small-molecule protac degraders of the bromodomain and extra terminal (bet) proteins—a review. Drug Discov Today Technol. 2019; 31: 3143-3151. doi:10.1016/j.ddtec.2019.04.001
10.1016/j.ddtec.2019.04.001 Google Scholar
- 245Maneiro MA, Forte N, Shchepinova MM, et al. Antibody-protac conjugates enable her2-dependent targeted protein degradation of brd4. ACS Chem Biol. 2020; 15(6): 1306-1312. doi:10.1021/acschembio.0c00285
- 246Dragovich PS, Pillow TH, Blake RA, et al. Antibody-mediated delivery of chimeric brd4 degraders. Part 1: exploration of antibody linker, payload loading, and payload molecular properties. J Med Chem. 2021; 64(5): 2534-2575. doi:10.1021/acs.jmedchem.0c01845
- 247Dragovich PS, Pillow TH, Blake RA, et al. Antibody-mediated delivery of chimeric brd4 degraders. Part 2: improvement of in vitro antiproliferation activity and in vivo antitumor efficacy. J Med Chem. 2021; 64(5): 2576-2607. doi:10.1021/acs.jmedchem.0c01846
- 248Pillow TH, Adhikari P, Blake RA, et al. Antibody conjugation of a chimeric bet degrader enables in vivo activity. ChemMedChem. 2020; 15(1): 17-25. doi:10.1002/cmdc.201900497
- 249Dragovich PS, Adhikari P, Blake RA, et al. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (eralpha). Bioorg Med Chem Lett. 2020; 30(4):126907. doi:10.1016/j.bmcl.2019.126907
- 250Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor alpha in oncology. Nat Rev Clin Oncol. 2020; 17(6): 349-359. doi:10.1038/s41571-020-0339-5
- 251Liu J, Chen H, Liu Y, et al. Cancer selective target degradation by folate-caged protacs. J Am Chem Soc. 2021; 143(19): 7380-7387. doi:10.1021/jacs.1c00451
- 252Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Revi Drug Discov. 2017; 16(3): 181-202. doi:10.1038/nrd.2016.199
- 253He S, Gao F, Ma J, Ma H, Dong G, Sheng C. Aptamer-protac conjugates (apcs) for tumor-specific targeting in breast cancer. Angew Chem Int Ed Engl. 2021; 60(43): 23299-23305. doi:10.1002/anie.202107347
- 254Banik SM, Pedram K, Wisnovsky S, Ahn G, Riley NM, Bertozzi CR. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020; 584(7820): 291-297. doi:10.1038/s41586-020-2545-9
- 255Takahashi D, Moriyama J, Nakamura T, et al. Autacs: Cargo-specific degraders using selective autophagy. Mol Cell. 2019; 76(5): 797-810. doi:10.1016/j.molcel.2019.09.009
- 256Li Z, Zhu C, Ding Y, Fei Y, Lu B. Attec: a potential new approach to target proteinopathies. Autophagy. 2020; 16(1): 185-187. doi:10.1080/15548627.2019.1688556
- 257Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020; 181(1): 102-114. doi:10.1016/j.cell.2019.11.031
- 258Donovan KA, Ferguson FM, Bushman JW, et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell. 2020; 183(6): 1714-1731. doi:10.1016/j.cell.2020.10.038
- 259Weng G, Shen C, Cao D, et al. Protac-db: an online database of protacs. Nucleic Acids Res. 2021; 49(D1): D1381-D1387. doi:10.1093/nar/gkaa807
- 260Vorobev AY, Moskalensky AE. Long-wavelength photoremovable protecting groups: on the way to in vivo application. Comput Struct Biotechnol J. 2020; 2020: 1827-1834. doi:10.1016/j.csbj.2019.11.007
- 261Weinstain R, Slanina T, Kand D, Klan P. Visible-to-nir-light activated release: from small molecules to nanomaterials. Chem Rev. 2020; 120(24): 13135-13272. doi:10.1021/acs.chemrev.0c00663
- 262Hennig AK, Deodato D, Asad N, Herbivo C, Dore TM. Two-photon excitable photoremovable protecting groups based on the quinoline scaffold for use in biology. J Org Chem. 2020; 85(2): 726-744. doi:10.1021/acs.joc.9b02780
- 263Cabré G, Garrido-Charles A, Moreno M, et al. Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation. Nature Comm. 2019; 10(1): 907. doi:10.1038/s41467-019-08796-9
- 264Chen S, Weitemier AZ, Zeng X, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science. 2018; 359(6376): 679-684. doi:10.1126/science.aaq1144
- 265Sasaki Y, Oshikawa M, Bharmoria P, et al. Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew Chem Int Ed. 2019; 58(49): 17827-17833. doi:10.1002/anie.201911025
- 266Kiely-Collins H, Winter GE, Bernardes GJL. The role of reversible and irreversible covalent chemistry in targeted protein degradation. Cell Chem Biol. 2021; 28(7): 952-968. doi:10.1016/j.chembiol.2021.03.005
- 267Liu J, Chen H, Ma L, et al. Light-induced control of protein destruction by opto-protac. Sci Adv. 2020; 6(8):eaay5154. doi:10.1126/sciadv.aay5154
- 268Fischer ES, Böhm K, Lydeard JR, et al. Structure of the ddb1-crbn e3 ubiquitin ligase in complex with thalidomide. Nature. 2014; 512(7512): 49-53. doi:10.1038/nature13527
- 269Zhang C, Han XR, Yang X, et al. Proteolysis targeting chimeras (protacs) of anaplastic lymphoma kinase (alk). Eur J Med Chem. 2018; 151: 304-314. doi:10.1016/j.ejmech.2018.03.071
- 270Li Z, Ma S, Yang X, et al. Development of photocontrolled brd4 protacs for tongue squamous cell carcinoma (tscc). Eur J Med Chem. 2021; 222:113608. doi:10.1016/j.ejmech.2021.113608