ROR1 contributes to melanoma cell growth and migration by regulating N-cadherin expression via the PI3K/Akt pathway
Natalia Brenda Fernández
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Search for more papers by this authorDaniela Lorenzo
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Search for more papers by this authorMaría Elisa Picco
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Search for more papers by this authorGastón Barbero
Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, CONICET, Buenos Aires, Argentina
Search for more papers by this authorLeonardo Sebastián Dergan-Dylon
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Search for more papers by this authorMaría Paula Marks
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Search for more papers by this authorHernán García-Rivello
Servicio de Anatomía Patológica, Hospital Italiano, Buenos Aires, Argentina
Search for more papers by this authorLiliana Gimenez
Instituto de Oncología Ángel Roffo, Buenos Aires, Argentina
Search for more papers by this authorVivian Labovsky
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Search for more papers by this authorLuca Grumolato
INSERM U982, Institute for Research and Innovation in Biomedicine, University of Rouen, France
Search for more papers by this authorCorresponding Author
Pablo Lopez-Bergami
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, CONICET, Buenos Aires, Argentina
Correspondence to: Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina (1405).
Search for more papers by this authorNatalia Brenda Fernández
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Search for more papers by this authorDaniela Lorenzo
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Search for more papers by this authorMaría Elisa Picco
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Search for more papers by this authorGastón Barbero
Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, CONICET, Buenos Aires, Argentina
Search for more papers by this authorLeonardo Sebastián Dergan-Dylon
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Search for more papers by this authorMaría Paula Marks
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Search for more papers by this authorHernán García-Rivello
Servicio de Anatomía Patológica, Hospital Italiano, Buenos Aires, Argentina
Search for more papers by this authorLiliana Gimenez
Instituto de Oncología Ángel Roffo, Buenos Aires, Argentina
Search for more papers by this authorVivian Labovsky
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Search for more papers by this authorLuca Grumolato
INSERM U982, Institute for Research and Innovation in Biomedicine, University of Rouen, France
Search for more papers by this authorCorresponding Author
Pablo Lopez-Bergami
Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, CONICET, Buenos Aires, Argentina
Correspondence to: Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina (1405).
Search for more papers by this authorAbstract
The Receptor tyrosine kinase-like Orphan Receptor 1 (ROR1) is primarily expressed by neural crest cells during embryogenesis. Following a complete downregulation after birth, ROR1 was shown to re-express in various types of cancers. Little is known about ROR1 expression and function in melanoma. Here we show that ROR1 is aberrantly expressed in both melanoma cell lines and tumors and that its expression associates with poor Post-Recurrence Survival of melanoma. Using gain- and loss-of-function approaches we found that ROR1 enhances both anchorage-dependent and -independent growth of melanoma cells. In addition, ROR1 decreases cell adhesion and increases cell motility and migration. Mechanistically, ROR1 was found to induce upregulation of Akt and the mesenquimal markers N-cadherin and vimentin. The regulation of N-cadherin by ROR1 relies on both Akt dependent and independent mechanisms. ROR1 does not affect Wnt canonical pathway but was found to be engaged in a positive feedback loop with Wnt5a. In summary, we show that ROR1 contributes to melanoma progression and is a candidate biomarker of poor prognosis. Although further studies are needed to confirm this possibility, the present work indicates that ROR1 is a good prospective target for melanoma cancer therapy. © 2015 Wiley Periodicals, Inc.
Supporting Information
Additional supporting information may be found in the online version of this article at the publisher's web-site.
Filename | Description |
---|---|
mc22426-sup-0001-SupFig-S1.tif4.5 MB |
Figure S1. Expression of ROR1 does not differ between primary and metastatic cell lines. |
mc22426-sup-0002-SupFig-S2-part-1.tif10 MB |
Figure S2. Expression profiling of ROR1 and Wnt5a in melanoma cell lines. |
mc22426-sup-0003-SupFig-S2-part-2.tif12.2 MB |
Figure Part 2. |
mc22426-sup-0004-SupFig-S3.tif8.5 MB |
Figure S3. Neither ROR2 nor Wnt5a associates with survival. |
mc22426-sup-0005-SupFig-S4.tif6.1 MB |
Figure S4. Silencing of ROR1 in A375 human melanoma cell line. |
mc22426-sup-0006-SupFig-S5.tif4.5 MB |
Figure S5. Silencing of ROR1 in Lu1205 human melanoma cell line. |
mc22426-sup-0007-SupFig-S6.tif6.2 MB |
Figure S6. Silencing of ROR1 in UACC903 human melanoma cell line. |
mc22426-sup-0008-SupFig-S7.tif3.7 MB |
Figure S7. Overexpression of ROR1 in A375 melanoma cell line. |
mc22426-sup-0009-SupFig-S8.tif5 MB |
Figure S8. Silencing of ROR1 decreases phosphorylation of Dvl-2 in Lu1205 cell line. |
mc22426-sup-0010-SupFig-S9.tif4.9 MB |
Figure S9. ROR1 increases proliferation in A375 melanoma cells. |
mc22426-sup-0011-SupFig-S10.tif9.2 MB |
Figure S10. ROR1 silencing inhibits anchorage-dependent and independent growth in Lu1205 melanoma cells. |
mc22426-sup-0012-SupFig-S11.tif7 MB |
Figure S11. ROR1 affects motility of A375 melanoma cells. |
mc22426-sup-0013-SupFig-S12.tif3.7 MB |
Figure S12. Silencing of ROR1 abrogates activation of RhoA/C. |
mc22426-sup-0014-SupFig-S13.tif5.1 MB |
Figure S13. ROR1 regulates Akt3 but not Akt2. |
mc22426-sup-0015-SupFig-S14.tif3 MB |
Figure S14. Wnt5a activates STAT3. |
mc22426-sup-0016-SupFig-S15.tif4.5 MB |
Figure S15. Expression of ROR1 in primary and metastatic cell lines from Philadelphia dataset. |
mc22426-sup-0017-SupTable-S1.pdf14.6 KB |
Table S1. Immunohistochemical analysis of ROR1 staining in melanoma tumor samples from Hospital Italiano. |
mc22426-sup-0018-SupTable-S2.pdf14.1 KB |
Table S2. Immunohistochemical analysis of ROR1 staining in melanoma tumor samples from Instituto Roffo. |
mc22426-sup-0019-SupTable-S3.pdf11.2 KB |
Table S3. Sequence of primers used for qRT-PCR. |
mc22426-sup-0020-Suppmat.pdf382.7 KB | Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Girotti MR, Saturno G, Lorigan P, Marais R. No longer an untreatable disease: How targeted and immunotherapies have changed the management of melanoma patients. Mol Oncol 2014; 8: 1140–1158.
- 2 Johnson DB, Sosman JA. Update on the targeted therapy of melanoma. Curr Treat Options Oncol 2013; 14: 280–292.
- 3 Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010; 141: 1117–1134.
- 4 Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005; 353: 172–187.
- 5 Hojjat-Farsangi M, Moshfegh A, Daneshmanesh AH, et al. The receptor tyrosine kinase ROR1—An oncofetal antigen for targeted cancer therapy. Semin Cancer Biol 2014; 29C: 21–31.
- 6 Masiakowski P, Carroll RD. A novel family of cell surface receptors with tyrosine kinase-like domain. J Biol Chem 1992; 267: 26181–26190.
- 7 Matsuda T, Nomi M, Ikeya M, et al. Expression of the receptor tyrosine kinase genes, Ror1 and Ror2, during mouse development. Mech Dev 2001; 105: 153–156.
- 8 Lyashenko N, Weissenbock M, Sharir A, Erben RG, Minami Y, Hartmann C. Mice lacking the orphan receptor ror1 have distinct skeletal abnormalities and are growth retarded. Dev Dyn 2010; 239: 2266–2277.
- 9 Berger C, Sommermeyer D, Hudecek M, et al. Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol Res 2014; 3: 206–216.
- 10 Nomi M, Oishi I, Kani S, et al. Loss of mRor1 enhances the heart and skeletal abnormalities in mRor2-deficient mice: Redundant and pleiotropic functions of mRor1 and mRor2 receptor tyrosine kinases. Mol Cell Biol 2001; 21: 8329–8335.
- 11 Daneshmanesh AH, Mikaelsson E, Jeddi-Tehrani M, et al. Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int J Cancer 2008; 123: 1190–1195.
- 12 Fukuda T, Chen L, Endo T, et al. Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci USA 2008; 105: 3047–3052.
- 13 Klein U, Tu Y, Stolovitzky GA, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 2001; 194: 1625–1638.
- 14 Rosenwald A, Alizadeh AA, Widhopf G, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194: 1639–1647.
- 15 Shabani M, Asgarian-Omran H, Jeddi-Tehrani M, et al. Overexpression of orphan receptor tyrosine kinase Ror1 as a putative tumor-associated antigen in Iranian patients with acute lymphoblastic leukemia. Tumour Biol 2007; 28: 318–326.
- 16 Shabani M, Asgarian-Omran H, Vossough P, et al. Expression profile of orphan receptor tyrosine kinase (ROR1) and Wilms’ tumor gene 1 (WT1) in different subsets of B-cell acute lymphoblastic leukemia. Leuk Lymphoma 2008; 49: 1360–1367.
- 17 Yamaguchi T, Yanagisawa K, Sugiyama R, et al. NKX2-1/TITF1/TTF-1-Induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell 2012; 21: 348–361.
- 18 Rabbani H, Ostadkarampour M, Danesh Manesh AH, Basiri A, Jeddi-Tehrani M, Forouzesh F. Expression of ROR1 in patients with renal cancer-a potential diagnostic marker. Iran Biomed J 2010; 14: 77–82.
- 19 Zhang S, Chen L, Cui B, et al. ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PloS ONE 2012; 7: e31127.
- 20 Hojjat-Farsangi M, Ghaemimanesh F, Daneshmanesh AH, et al. Inhibition of the receptor tyrosine kinase ROR1 by anti-ROR1 monoclonal antibodies and siRNA induced apoptosis of melanoma cells. PloS ONE 2013; 8: e61167.
- 21 Cui B, Zhang S, Chen L, et al. Targeting ROR1 inhibits epithelial-mesenchymal transition and metastasis. Cancer Res 2013; 73: 3649–3660.
- 22 Serra R, Easter SL, Jiang W, Baxley SE. Wnt5a as an effector of TGFbeta in mammary development and cancer. J Mammary Gland Biol Neoplasia 2011; 16: 157–167.
- 23 O'Connell MP, Marchbank K, Webster MR, et al. Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov 2013; 3: 1378–1393.
- 24 Shibamoto S, Higano K, Takada R, Ito F, Takeichi M, Takada S. Cytoskeletal reorganization by soluble Wnt-3a protein signalling. Genes Cells 1998; 3: 659–670.
- 25 Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH, Ronai Z. RACK1 mediates activation of JNK by protein kinase C [corrected]. Mol Cell 2005; 19: 309–320.
- 26 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.
- 27 Widmer DS, Cheng PF, Eichhoff OM, et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res 2012; 25: 343–353.
- 28 Bogunovic D, O'Neill DW, Belitskaya-Levy I, et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci USA 2009; 106: 20429–20434.
- 29 Bryja V, Schulte G, Rawal N, Grahn A, Arenas E. Wnt-5a induces dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. J Cell Sci 2007; 120: 586–595.
- 30 Gonzalez-Sancho JM, Brennan KR, Castelo-Soccio LA, Brown AM. Wnt proteins induce dishevelled phosphorylation via an LRP5/6- independent mechanism, irrespective of their ability to stabilize beta-catenin. Mol Cell Biol 2004; 24: 4757–4768.
- 31 Cavallaro U, Christofori G. Cell adhesion in tumor invasion and metastasis: Loss of the glue is not enough. Biochim Biophys Acta 2001; 1552: 39–45.
- 32 Li P, Harris D, Liu Z, Liu J, Keating M, Estrov Z. Stat3 activates the receptor tyrosine kinase like orphan receptor-1 gene in chronic lymphocytic leukemia cells. PloS ONE 2010; 5: e11859.
- 33 Zhang S, Chen L, Wang-Rodriguez J, et al. The onco-embryonic antigen ROR1 is expressed by a variety of human cancers. Am J Pathol 2012; 181: 1903–1910.
- 34 Zhang H, Qiu J, Ye C, et al. ROR1 expression correlated with poor clinical outcome in human ovarian cancer. Sci Rep 2014; 4: 5811.
- 35 Hojjat-Farsangi M, Khan AS, Daneshmanesh AH, et al. The tyrosine kinase receptor ROR1 is constitutively phosphorylated in chronic lymphocytic leukemia (CLL) cells. PloS ONE 2013; 8: e78339.
- 36 Bicocca VT, Chang BH, Masouleh BK, et al. Crosstalk between ROR1 and the Pre-B cell receptor promotes survival of t(1;19) acute lymphoblastic leukemia. Cancer Cell 2012; 22: 656–667.
- 37 Daneshmanesh AH, Hojjat-Farsangi M, Moshfegh A, et al. The PI3K/AKT/mTOR pathway is involved in direct apoptosis of CLL cells induced by ROR1 monoclonal antibodies. Br J Haematol 2015; 169: 455–458.
- 38 Forrester WC, Kim C, Garriga G. The Caenorhabditis elegans Ror RTK CAM-1 inhibits EGL-20/Wnt signaling in cell migration. Genetics 2004; 168: 1951–1962.
- 39 Tseng HC, Kao HW, Ho MR, et al. Cytoskeleton network and cellular migration modulated by nuclear-localized receptor tyrosine kinase R OR1. Anticancer Res 2011; 31: 4239–4249.
- 40 Caramel J, Papadogeorgakis E, Hill L, et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 2013; 24: 466–480.
- 41 Boyd SC, Mijatov B, Pupo GM, et al. Oncogenic B-RAF (V600E) signaling induces the T-Box3 transcriptional repressor to repress E-cadherin and enhance melanoma cell invasion. J Invest Dermatol 2012; 133: 1269–1277.
- 42 Katoh M, Katoh M. Transcriptional mechanisms of WNT5A based on NF-kappaB, Hedgehog, TGFbeta, and Notch signaling cascades. Int J Mol Med 2009; 23: 763–769.
- 43 Anastas JN, Kulikauskas RM, Tamir T, et al. WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J Clin Invest 2014; 124: 2877–2890.
- 44 Endo M, Nishita M, Fujii M, Minami Y. Insight into the role of wnt5a-induced signaling in normal and cancer cells. Int Rev Cell Mol Biol 2015; 314: 117–148.
- 45 Hojjat-Farsangi M. Small-molecule inhibitors of the receptor tyrosine kinases: Promising tools for targeted cancer therapies. Int J Mol Sci 2014; 15: 13768–13801.
- 46 Baskar S, Wiestner A, Wilson WH, Pastan I, Rader C. Targeting malignant B cells with an immunotoxin against ROR1. MAbs 2012; 4: 349–361.
- 47 Daneshmanesh AH, Hojjat-Farsangi M, Khan AS, et al. Monoclonal antibodies against ROR1 induce apoptosis of chronic lymphocytic leukemia (CLL) cells. Leukemia 2011; 26: 1348–1355.
- 48 Choi MY, Widhopf GF, 2nd, Wu CC et al. Pre-clinical Specificity and Safety of UC-961, a First-In-Class Monoclonal Antibody Targeting ROR1. Clin Lymphoma Myeloma Leuk 2015; 15: S167–S169.