Investigations of Microstructures and Properties of SPEEK-[BMIm][OTf] Ionic Liquid Composite Membrane for Fuel Cells
Shute Yu
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Lanlan Qin
College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhaohong Miao
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Jian Zhou
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorShute Yu
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Lanlan Qin
College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhaohong Miao
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Jian Zhou
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Utilizing ionic liquids in proton exchange membranes can greatly enhance the performance of fuel cells, enabling their application in high-temperature and dry conditions. Further advancements in this field depend on a fundamental comprehension of their structural characteristics. This study focuses on the sulfonated poly(ether ether ketone) (SPEEK)-1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIm][OTf] composite membrane system. Effects of sulfonation degree, ionic liquid content, and temperature on the structure and conductivity of the composite membrane are investigated by dissipative particle dynamics (DPD) and molecular dynamics (MD) simulations. Results show that [BMIm][OTf] is predominantly distributed around the sulfonic acid groups of SPEEK. At an optimal sulfonation degree and ionic liquid content, interconnected ionic liquid channels can be formed. Nevertheless, an excessively high sulfonation degree may jeopardize the stability of the membrane structure. Moreover, the aggregation of ionic liquid occurs at a high level of ionic liquid content, which hinders the efficient transfer of protons. Generally, increasing the temperature is more conducive to the formation of monodisperse ionic liquid channels within the SPEEK-[BMIm][OTf] composite membrane; however, overhigh temperature may compromise the integrity of the composite membrane structure. The findings of this study offer molecular insights for the development of high-temperature proton exchange membrane fuel cell systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
mats202400080-sup-0001-SuppMat.pdf553.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Ahmad, T. Nawaz, A. Ali, M. F. Orhan, A. Samreen, A. M. Kannan, Int. J. Hydrogen Energy 2022, 47, 19086.
- 2M. M. Tellez-Cruz, J. Escorihuela, O. Solorza-Feria, V. Compañ, Polymers 2021, 13, 3064.
- 3T. Xu, J.-J. Woo, S.-J. Seo, S.-H. Moon, J. Membr. Sci. 2008, 325, 209.
- 4A. K. Mishra, S. Bose, T. Kuila, N. H. Kim, J. H. Lee, Prog. Polym. Sci. 2012, 37, 842.
- 5F. Lufrano, V. Baglio, P. Staiti, V. Antonucci, A. S. Arico, J. Power Sources 2013, 243, 519.
- 6C. Schmidt, T. Glück, G. Schmidt-Naake, Chem. Eng. Technol. 2008, 31, 13.
- 7A. Iulianelli, A. Basile, Int. J. Hydrogen Energy 2012, 37, 15241.
- 8G. Nawn, G. Pace, S. Lavina, K. Vezzù, E. Negro, F. Bertasi, S. Polizzi, V. Di Noto, Macromolecules 2015, 48, 15.
- 9H. A. Elwan, M. Mamlouk, K. Scott, J. Power Sources 2021, 484, 229197.
- 10J. Stoimenovski, E. I. Izgorodina, D. R. MacFarlane, Phys. Chem. Chem. Phys. 2010, 12, 10341.
- 11K. S. Khoo, W. Y. Chia, K. Wang, C.-K. Chang, H. Y. Leong, M. N. B. Maaris, P. L. Show, Sci. Total Environ. 2021, 793, 148705.
- 12H. Nakamoto, A. Noda, K. Hayamizu, S. Hayashi, H.-o. Hamaguchi, M. Watanabe, J. Phys. Chem. C 2007, 111, 1541.
- 13S. Thayumanasundaram, V. S. Rangasamy, J. W. Seo, J.-P. Locquet, Eur. J. Inorg. Chem. 2015, 2015, 5395.
- 14Ş. Erce, H. Erdener, R. G. Akay, H. Yücel, N. Baç, İ. Eroğlu, Int. J. Hydrogen Energy 2009, 34, 4645.
- 15S. J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Int. J. Hydrogen Energy 2010, 35, 9349.
- 16P. R. Jothi, S. Dharmalingam, J. Membr. Sci. 2014, 450, 389.
- 17X. Wang, M. Jin, Y. Li, L. Zhao, Electrochim. Acta 2017, 257, 290.
- 18R. S. Malik, P. Verma, V. Choudhary, Electrochim. Acta 2015, 152, 352.
- 19Z. Guan, Y. Jin, S. Shi, B. Jin, M. Zhang, L. Zhao, Polymer 2022, 254, 125011.
- 20H. Zhang, W. Wu, J. Wang, T. Zhang, B. Shi, J. Liu, S. Cao, J. Membr. Sci. 2015, 476, 136.
- 21R. Jiang, H. R. Kunz, J. M. Fenton, J. Power Sources 2005, 150, 120.
- 22M. Fang, L. Qiao, M. Wu, Y. Ye, M. Yang, S. Liu, H. Zhang, X. Ma, J. Power Sources 2023, 563, 232815.
- 23P. Qian, L. Li, H. Wang, J. Sheng, Y. Zhou, H. Shi, J. Membr. Sci. 2022, 662, 120973.
- 24C. Gong, X. Zheng, H. Liu, G. Wang, F. Cheng, G. Zheng, S. Wen, W.-C. Law, C.-P. Tsui, C.-Y. Tang, J. Power Sources 2016, 325, 453.
- 25K. N. T. Do, D. Kim, J. Power Sources 2008, 185, 63.
- 26A. Saccà, A. Carbone, R. Pedicini, G. Portale, L. D'Ilario, A. Longo, A. Martorana, E. Passalacqua, J. Membr. Sci. 2006, 278, 105.
- 27J. A. Dura, V. S. Murthi, M. Hartman, S. K. Satija, C. F. Majkrzak, Macromolecules 2009, 42, 4769.
- 28F. Xu, O. Diat, G. Gebel, A. Morin, J. Electrochem. Soc. 2007, 154, B1389.
- 29J. Mai, D. Sun, L. Li, J. Zhou, J. Chem. Eng. Data 2016, 61, 3998.
- 30D. Sun, J. Zhou, Acta. Phys. Chim. Sin. 2012, 28, 909.
- 31K. Okuwaki, Y. Mochizuki, H. Doi, S. Kawada, T. Ozawa, K. Yasuoka, RSC Adv. 2018, 8, 34582.
- 32Y. Ma, Y. Wang, X. Deng, G. Zhou, S. Khalid, X. Sun, W. Sun, Q. Zhou, G. Lu, RSC Adv. 2017, 7, 39676.
- 33J. Wang, Z. Xu, J. Chen, X. Yang, S. Ramakrishna, Y. Liu, Macromol. Theory Simul. 2021, 30, 2100006.
- 34R. D. Groot, T. J. Madden, J. Chem. Phys. 1998, 108, 8713.
- 35R. D. Groot, P. B. Warren, J. Chem. Phys. 1997, 107, 4423.
- 36S. Yamamoto, S.-a. Hyodo, Polym. J. 2003, 35, 519.
- 37C. F. Fan, B. D. Olafson, M. Blanco, S. L. Hsu, Macromolecules 1992, 25, 3667.
- 38H. Sun, Z. Jin, C. Yang, R. L. C. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, S. M. Todd, J. Mol. Model. 2016, 22, 47.
- 39Y.-L. Zhu, H. Liu, Z.-W. Li, H.-J. Qian, G. Milano, Z.-Y. Lu, J. Comput. Chem. 2013, 34, 2197.
- 40W. L. Jorgensen, J. Tirado-Rives, J. Am. Chem. Soc. 1988, 110, 1657.
- 41M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, SoftwareX 2015, 1–2, 19.
10.1016/j.softx.2015.06.001 Google Scholar
- 42L. Sun, S. Qu, X. Lv, L. Ding, J. Duan, W. Wang, ACS Appl. Polym. Mater. 2023, 5, 10081.
- 43Z. Li, Z. Guan, C. Wang, B. Quan, L. Zhao, J. Membr. Sci. 2021, 620, 118897.
- 44J. J. Rubio Arias, S. d. S. Bento, M. d. F. Vieira Marques, A. d. S. Gomes, J. Appl. Polym. Sci. 2021, 138, 49871.
- 45M. Yılmazoğlu, F. Bayıroğlu, H. Erdemi, U. Abaci, H. Y. Guney, Colloids Surf. A 2021, 611, 125825.
- 46S. Qu, Y. Sun, J. Li, Ionics 2017, 23, 1607.
- 47K. Schmidt-Rohr, Q. Chen, Nat. Mater. 2008, 7, 75.
- 48X. Lv, S. Qu, L. Sun, L. Ding, J. Duan, W. Wang, Polym. Compos. 2023, 44, 7350.
- 49T. He, M. Frank, M. H. V. Mulder, M. Wessling, J. Membr. Sci. 2008, 307, 62.
- 50R. Wang, X. Wu, X. Yan, G. He, Z. Hu, J. Membr. Sci. 2015, 479, 46.
- 51L. Sarkisov, A. Harrison, Mol. Simul. 2011, 37, 1248.
- 52M. Yılmazoğlu, J. Mater. Sci.: Mater. Electron. 2021, 32, 15393.
- 53L. Sun, S. Qu, X. Lv, J. Duan, W. Wang, J. Appl. Polym. Sci. 2023, 140, e53384.
- 54Q. Peng, Y. Li, M. Qiu, B. Shi, X. He, C. Fan, X. Mao, H. Wu, Z. Jiang, Ind. Eng. Chem. Res. 2021, 60, 4460.
- 55J. Mai, D. Sun, X. Quan, L. Li, J. Zhou, Acta. Phys. Chim. Sin. 2016, 32, 1649.
- 56X. Meng, Q. Peng, J. Wen, K. Song, L. Peng, T. Wu, C. Cong, H. Ye, Q. Zhou, J. Appl. Polym. Sci. 2023, 140, e53802.
- 57H. Jiang, S. Fang, Polym. Adv. Technol. 2006, 17, 494.
- 58S. Qu, M. Li, C. Zhang, J. Duan, W. Wang, J. Li, X. Li, Int. J. Hydrogen Energy 2020, 45, 29883.
- 59W. Cai, Y. Hu, Y. Pan, X. Zhou, F. Chu, L. Han, X. Mu, Z. Zhuang, X. Wang, W. Xing, J. Colloid Interface Sci. 2020, 561, 32.
- 60D. Sun, J. Zhou, AIChE J. 2013, 59, 2630.
- 61X. Wang, Y. Rong, F. Wang, C. Zhang, Q. Wang, Microporous Mesoporous Mater. 2022, 346, 112314.
- 62M. Yılmazoğlu, F. Bayıroğlu, H. Erdemi, U. Abaci, H. Y. Guney, J. Solid State Electrochem. 2023, 27, 1143.