Application of Organic Gel on Skin Realized by Hydrogel/Organic Gel Adhesion
Ziqing Hu
Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Wei Tang
Key Laboratory of Human-Machine-Intelligence Synergic System, Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Xiaofan Ji
Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected], [email protected]
Search for more papers by this authorZiqing Hu
Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Wei Tang
Key Laboratory of Human-Machine-Intelligence Synergic System, Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Xiaofan Ji
Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Diversity in solvent selection bestows the organic gel with appealing characteristics embracing antidrying, anti-icing, and antifouling abilities. However, organic gel, subjected to the “toxic” inherent property of solvent, is not able to be manipulated on skin. Herein, introducing the hydrogel layer amid organic gel and skin is envisaged to realize application of organic gel on skin. Hydrogel, inserted as the medium layer, works for the coupling role between skin and organic gel, also avoids the direct contact of organic gel toward skin. First, hydrogel system composed of acrylic acid is fabricated, meanwhile organic gel is prepared employing 2-hydroxyethyl methacrylate, ethylene glycol (EG) as solvent. Organic gel is able to adhere to hydrogel by hydrogen bonding resulting from carboxyl groups of polyacrylic acid chains and hydroxyl groups occurring on 2-hydroxyethyl methacrylate or EG. Additionally, hydrogen bonding enables the hydrogel to be firmly attached to skin, thus organic gel/hydrogel/skin assembly is produced. The further application of organic gel is exploited by incorporating stimuli-responsive dyes including spiropyran and rhodamine derivative.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
marc202400371-sup-0001-SuppMat.docx1.4 MB | Supporting Information |
marc202400371-sup-0002-MovieS1.mp414.5 MB | Supplemental Movie 1 |
marc202400371-sup-0003-MovieS2.mp415.3 MB | Supplemental Movie 2 |
marc202400371-sup-0004-MovieS3.mp412.4 MB | Supplemental Movie 3 |
marc202400371-sup-0005-MovieS4.mp418.8 MB | Supplemental Movie 4 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. A. Kuzina, D. D. Kartsev, A. V. Stratonovich, P. A. Levkin, Adv. Funct. Mater. 2023, 33, 2301421.
- 2A. Ajayaghosh, V. K. Praveen, C. Vijayakumar, Chem. Soc. Rev. 2008, 37, 109.
- 3L. Zeng, X. Lin, P. Li, F.-Q. Liu, H. Guo, W.-H. Li, Prog. Org. Coat. 2021, 159, 106417.
- 4Y. Zhao, Y. Ohm, J. Liao, Y. Luo, H.-Y. Cheng, P. Won, P. Roberts, M. R. Carneiro, M. F. Islam, J. H. Ahn, L. M. Walker, C. Majidi, Nat. Electron. 2023, 6, 206.
- 5Y. Feng, J. Yu, D. Sun, W. Ren, C. Shao, R. Sun, Chem. Eng. J. 2022, 433, 133202.
- 6C. L. Esposito, P. Kirilov, V. G. Roullin, J. Controlled Release 2018, 271, 1.
- 7X. Ma, J. Zhang, J. Tang, T. Ren, J. Wei, Y. Liang, J. Zhang, E. Feng, X. Han, Adv. Microfluid.: New Appl. Biol., Energy, Mater. Sci. 2024, 7, 450.
- 8X. Su, H. Wang, Z. Tian, X. Duan, Z. Chai, Y. Feng, Y. Wang, Y. Fan, J. Huang, ACS Appl. Mater. Interfaces 2020, 12, 29757.
- 9Q. Rong, W. Lei, L. Chen, Y. Yin, J. Zhou, M. Liu, Angew. Chem., Int. Ed. 2017, 56, 14159.
- 10H. Zhang, Y. Liang, P. Wang, D. Zhang, Prog. Org. Coat. 2019, 132, 132.
- 11S. Wu, Q. Zhang, Y. Deng, X. Li, Z. Luo, B. Zheng, S. Dong, J. Am. Chem. Soc. 2020, 142, 448.
- 12W. Lu, S. Wei, H. Shi, X. Le, G. Yin, T. Chen, Aggregate 2021, 2, e37.
- 13H. Wang, C. N. Zhu, H. Zeng, X. Ji, T. Xie, X. Yan, Z. L. Wu, F. Huang, Adv. Mater. 2019, 31, 1807328.
- 14H. Wang, X. Ji, Y. Li, Z. Li, G. Tang, F. Huang, J. Mater. Chem. B 2018, 6, 2728.
- 15M. Wu, L. Han, B. Yan, H. Zeng, Supramol. Mater. 2023, 2, 100045.
10.1016/j.supmat.2023.100045 Google Scholar
- 16D. Jiao, Q. L. Zhu, C. Y. Li, Q. Zheng, Z. L. Wu, Acc. Chem. Res. 2022, 55, 1533.
- 17Y. Zhao, S. Song, X. Ren, J. Zhang, Q. Lin, Y. Zhao, Chem. Rev. 2022, 122, 5604.
- 18Z. Hu, S. Xu, H. Zhang, X. Ji, Aggregate 2023, 4, e283.
- 19Z. Li, P. Liu, X. Ji, J. Gong, Y. Hu, W. Wu, X. Wang, H.-Q. Peng, R. T. K. Kwok, J. W. Y. Lam, J. Lu, B. Z. Tang, Adv. Mater. 2020, 32, 1906493.
- 20L. Hu, P. L. Chee, S. Sugiarto, Y. Yu, C. Shi, R. Yan, Z. Yao, X. Shi, J. Zhi, D. Kai, H.-D. Yu, W. Huang, Adv. Mater. 2023, 35, 2205326.
- 21X. P. Hao, C. W. Zhang, W. Hong, M. Meng, L. X. Hou, M. Du, Q. Zheng, Z. L. Wu, Mater. Horiz. 2023, 10, 432.
- 22T. Zhu, Y. Ni, G. M. Biesold, Y. Cheng, M. Ge, H. Li, J. Huang, Z. Lin, Y. Lai, Chem. Soc. Rev. 2023, 52, 473.
- 23N. Thakur, B. Singh, Supramol. Mater. 2023, 2, 100048.
10.1016/j.supmat.2023.100048 Google Scholar
- 24D. Seliktar, Science 2012, 336, 1124.
- 25D. Wang, J. Zeng, H. Zhu, S. Liu, L. Jia, W. Liu, Q. Wang, S. Wang, W. Liu, J. Zhou, H. Chen, X. Liu, H. Jiang, Aggregate 2024, 5, e477.
- 26S. Li, Y. Cong, J. Fu, J. Mater. Chem. B 2021, 9, 4423.
- 27C. Du, J. Hu, X. Wu, H. Shi, H. C. Yu, J. Qian, J. Yin, C. Gao, Z. L. Wu, Q. Zheng, J. Mater. Chem. B 2022, 10, 468.
- 28J. Li, L. Mo, C.-H. Lu, T. Fu, H.-H. Yang, W. Tan, Chem. Soc. Rev. 2016, 45, 1410.
- 29E. A. Kamoun, E.-R. S. Kenawy, X. Chen, J. Adv. Res. 2017, 8, 217.
- 30Q. Zhang, T. Li, A. Duan, S. Dong, W. Zhao, P. J. Stang, J. Am. Chem. Soc. 2019, 141, 8058.
- 31H. Lin, H. Chen, J. Liu, H. Li, D. Mao, Supramol. Mater. 2023, 2, 100047.
- 32Z. Zhang, W. You, P. Li, J. Zhao, Z. Guo, T. Xu, J. Chen, W. Yu, X. Yan, J. Am. Chem. Soc. 2023, 145, 567.
- 33W.-J. Guo, T. Peng, W. Zhu, S. Ma, G. Wang, Y. Li, B. Liu, H.-Q. Peng, Aggregate 2023, 4, e297.
- 34S. Wu, C. Cai, F. Li, Z. Tan, S. Dong, Angew. Chem., Int. Ed. 2020, 59, 11871.
- 35Y. Liu, J. Wan, X. Zhao, J. Zhao, Y. Guo, R. Bai, Z. Zhang, W. Yu, H. W. Gibson, X. Yan, Angew. Chem., Int. Ed. 2023, 62, e202302370.
- 36D. Zhao, Z. Zhang, Z. Wei, J. Zhao, T. Li, X. Yan, Angew. Chem., Int. Ed. 2024, 63, e202402394.
- 37H. Ju, C. N. Zhu, H. Wang, Z. A. Page, Z. L. Wu, J. L. Sessler, F. Huang, Adv. Mater. 2022, 34, 2108163.
- 38W. Han, W. Xiang, Q. Li, H. Zhang, Y. Yang, J. Shi, Y. Ji, S. Wang, X. Ji, N. M. Khashab, J. L. Sessler, Chem. Soc. Rev. 2021, 50, 10025.
- 39H.-Q. Peng, W. Zhu, W.-J. Guo, Q. Li, S. Ma, C. Bucher, B. Liu, X. Ji, F. Huang, J. L. Sessler, Prog. Polym. Sci. 2023, 137, 101635.
- 40A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem. 2011, 3, 34.
- 41W. Lu, R. Wang, M. Si, Y. Zhang, S. Wu, N. Zhu, W. Wang, T. Chen, SmartMat 2024, 5, e1190.
- 42G. Ju, M. Cheng, F. Guo, Q. Zhang, F. Shi, Angew. Chem., Int. Ed. 2018, 57, 8963.
- 43D. Sun, Y. Feng, S. Sun, J. Yu, S. Jia, C. Dang, X. Hao, J. Yang, W. Ren, R. Sun, C. Shao, F. Peng, Adv. Funct. Mater. 2022, 32, 2201335.
- 44H. Ozay, O. Ozay, Chem. Eng. J. 2013, 232, 364.
- 45L. E. Elizalde, R. Ledezma, R. G. López, Synth. Commun. 2005, 35, 603.
- 46R. Klajn, Chem. Soc. Rev. 2014, 43, 148.
- 47N. Bar, P. Chowdhury, ACS Appl. Electron. Mater. 2022, 4, 3749.