Sprayable Zwitterionic Antibacterial Hydrogel With High Mechanical Resilience and Robust Adhesion for Joint Wound Treatment
Qinsheng Hu
Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041 China
Department of Orthopedic Surgery, Yaan People's Hospital, Yaan, 625000 China
Search for more papers by this authorYangrui Du
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYangjing Bai
West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041 China
Search for more papers by this authorDandan Xing
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorShiying Lang
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorKaijun Li
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorXinyun Li
Dazhou Hospital of Integrated Traditional Chinese and Western Medicine, Dazhou, Sichuan, 635000 China
Search for more papers by this authorCorresponding Author
Yong Nie
Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041 China
: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Gongyan Liu
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
: [email protected]; [email protected]
Search for more papers by this authorQinsheng Hu
Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041 China
Department of Orthopedic Surgery, Yaan People's Hospital, Yaan, 625000 China
Search for more papers by this authorYangrui Du
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYangjing Bai
West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041 China
Search for more papers by this authorDandan Xing
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorShiying Lang
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorKaijun Li
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorXinyun Li
Dazhou Hospital of Integrated Traditional Chinese and Western Medicine, Dazhou, Sichuan, 635000 China
Search for more papers by this authorCorresponding Author
Yong Nie
Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041 China
: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Gongyan Liu
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
: [email protected]; [email protected]
Search for more papers by this authorAbstract
Wound healing in movable parts, including the joints and neck, remains a critical challenge due to frequent motions and poor flexibility of dressings, which may lead to mismatching of mechanical properties and poor fitting between dressings and wounds; thus, increasing the risk of bacterial infection. This study proposes a sprayable zwitterionic antibacterial hydrogel with outstanding flexibility and desirable adhesion. This hydrogel precursor is fabricated by combining zwitterionic sulfobetaine methacrylate (SBMA) with poly(sulfobetaine methacrylate-co-dopamine methacrylamide)-modified silver nanoparticles (PSBDA@AgNPs) through robust electrostatic interactions. About 150 s of exposure to UV light, the SBMA monomer polymerizes to form PSB chains entangled with PSBDA@AgNPs, transformed into a stable and adhesion PSB–PSB@Ag hydrogel at the wound site. The resulting hydrogel has adhesive strength (15–38 kPa), large tensile strain (>400%), suitable shape adaptation, and excellent mechanical resilience. Moreover, the hydrogel displays pH-responsive behavior; the acidic microenvironment at the infected wound sites prompts the hydrogel to rapidly release AgNPs and kill bacteria. Further, the healing effect of the hydrogel is demonstrated on the rat neck skin wound, showing improved wound closing rate due to reduced inflammation and enhanced angiogenesis. Overall, the sprayable zwitterionic antibacterial hydrogel has significant potential to promote joint skin wound healing.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202300683-sup-0001-SuppMat.pdf444.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) T. Dainichi, A. Kitoh, A. Otsuka, S. Nakajima, T. Nomura, D. H. Kaplan, K. Kabashima, Nat. Immunol. 2018, 19, 1286; b) J. Qu, X. Zhao, Y. Liang, T. Zhang, P. X. Ma, B. Guo, Biomaterials 2018, 183, 185; c) C. Ghobril, M. W. Grinstaff, Chem. Soc. Rev. 2015, 44, 1820.
- 2a) W. Wang, B. Jia, H. Xu, Z. Li, L. Qiao, Y. Zhao, H. Huang, X. Zhao, B. Guo, Chem. Eng. J. 2023, 468, 143326;
b) S. Li, L. Wang, W. Zheng, G. Yang, X. Jiang, Adv. Funct. Mater. 2020, 30, 2002370;
c) K. Chen, Z. Wu, Y. Liu, Y. Yuan, C. Liu, Adv. Funct. Mater. 2021, 32, 2109687;
10.1002/adfm.202109687 Google Scholard) Y. Wang, D. Xiao, H. Yu, R. Ke, S. Shi, Y. Tang, Y. Zhong, L. Zhang, X. Sui, B. Wang, X. Feng, H. Xu, Z. Mao, Composites, Part B 2022, 235, 109762; e) X. Zhou, P. Feng, H. Liu, B. Song, Biomater. Sci. 2022, 10, 5146.
- 3W. Ma, S. Ling, Y. Liu, Z. Chen, J. Xu, ACS Appl. Mater. Interfaces 2023, 15, 22915.
- 4a) I. Castangia, A. Nácher, C. Caddeo, D. Valenti, A. M. Fadda, O. Díez-Sales, A. Ruiz-Saurí, M. Manconi, Acta Biomater. 2014, 10, 1292; b) A. Bal-Ozturk, B. Cecen, M. Avci-Adali, S. N. Topkaya, E. Alarcin, G. Yasayan, Y.-C. E. Li, B. Bulkurcuoglu, A. Akpek, H. Avci, K. Shi, S. R. Shin, S. Hassan, Nano Today 2021, 36, 101049; c) G. M. Taboada, K. Yang, M. J. N. Pereira, S. S. Liu, Y. Hu, J. M. Karp, N. Artzi, Y. Lee, Nat. Rev. Mater. 2020, 5, 310.
- 5a) N. Annabi, D. Rana, E. Shirzaei Sani, R. Portillo-Lara, J. L. Gifford, M. M. Fares, S. M. Mithieux, A. S. Weiss, Biomaterials 2017, 139, 229; b) B. Guo, P. X. Ma, Biomacromolecules 2018, 19, 1764; c) X. Zhao, X. Chen, H. Yuk, S. Lin, X. Liu, G. Parada, Chem. Rev. 2021, 121, 4309.
- 6a) H. Wang, Z. Xu, M. Zhao, G. Liu, J. Wu, Biomater. Sci. 2021, 9, 1530; b) J. Liu, S. Qu, Z. Suo, W. Yang, Natl. Sci. Rev. 2021, 8, nwaa254; c) Y. Liang, J. He, B. Guo, ACS Nano 2021, 15, 12687; d) Y. Zhao, S. Song, X. Ren, J. Zhang, Q. Lin, Y. Zhao, Chem. Rev. 2022, 122, 5604.
- 7a) Z. Li, W. Xu, X. Wang, W. Jiang, X. Ma, F. Wang, C. Zhang, C. Ren, Eur. Polym. J. 2021, 146, 110253;
b) B. Xu, A. Li, R. Wang, J. Zhang, Y. Ding, D. Pan, Z. Shen, Adv. Funct. Mater. 2021, 31, 2105605;
c) L. Wang, W. Zheng, Q. Hou, L. Zhong, Q. Li, X. Jiang, Adv. Healthcare Mater. 2022, 11, 2201053;
d) S. O. Blacklow, J. Li, B. R. Freedman, M. Zeidi, C. Chen, D. J. Mooney, Sci. Adv. 2019, 5, eaaw396.
10.1126/sciadv.aaw3963 Google Scholar
- 8a) J. Chen, D. Wang, L. H. Wang, W. Liu, A. Chiu, K. Shariati, Q. Liu, X. Wang, Z. Zhong, J. Webb, R. E. Schwartz, N. Bouklas, M. Ma, Adv. Mater. 2020, 32, 2001628; b) B. Jin, G. Zhang, J. Lian, Q. Zhang, X. Zhan, F. Chen, J. Mater. Chem. A 2019, 7, 12266; c) X. Hu, G. Nian, X. Liang, L. Wu, T. Yin, H. Lu, S. Qu, W. Yang, ACS Appl. Mater. Interfaces 2019, 11, 10292.
- 9Z. Yang, R. Huang, B. Zheng, W. Guo, C. Li, W. He, Y. Wei, Y. Du, H. Wang, D. Wu, H. Wang, Adv. Sci. 2021, 8, 2003627.
- 10a) Z. Wei, J. H. Yang, Z. Q. Liu, F. Xu, J. X. Zhou, M. Zrínyi, Y. Osada, Y. M. Chen, Adv. Funct. Mater. 2015, 25, 1352; b) M. Amjadi, S. Sheykhansari, B. J. Nelson, M. Sitti, Adv. Mater. 2018, 30, 1704530; c) Z. Wei, J. H. Yang, J. Zhou, F. Xu, M. Zrínyi, P. H. Dussault, Y. Osada, Y. M. Chen, Chem. Soc. Rev. 2014, 43, 8114; d) P. Heidarian, A. Z. Kouzani, A. Kaynak, B. Bahrami, M. Paulino, B. Nasri-Nasrabadi, R. J. Varley, Macromol. Rapid Commun. 2020, 41, 2000439; e) X. Yan, Z. Liu, Q. Zhang, J. Lopez, H. Wang, H.-C. Wu, S. Niu, H. Yan, S. Wang, T. Lei, J. Li, D. Qi, P. Huang, J. Huang, Y. Zhang, Y. Wang, G. Li, J. B. H. Tok, X. Chen, Z. Bao, J. Am. Chem. Soc. 2018, 140, 5280.
- 11L. Zhou, C. Dai, L. Fan, Y. Jiang, C. Liu, Z. Zhou, P. Guan, Y. Tian, J. Xing, X. Li, Y. Luo, P. Yu, C. Ning, G. Tan, Adv. Funct. Mater. 2021, 31, 2007457.
- 12a) X. Qu, S. Wang, Y. Zhao, H. Huang, Q. Wang, J. Shao, W. Wang, X. Dong, Chem. Eng. J. 2021, 425, 131523; b) C. Cai, H. Zhu, Y. Chen, Y. Guo, Z. Yang, H. Li, H. Liu, ACS Nano 2022, 16, 20044; c) M. Li, Y. Liang, Y. Liang, G. Pan, B. Guo, Chem. Eng. J. 2022, 427, 132039.
- 13a) H. Jung, M. K. Kim, J. Y. Lee, S. W. Choi, J. Kim, Adv. Funct. Mater. 2020, 30, 2004407; b) C. K. Roy, H. L. Guo, T. L. Sun, A. B. Ihsan, T. Kurokawa, M. Takahata, T. Nonoyama, T. Nakajima, J. P. Gong, Adv. Mater. 2015, 27, 7344; c) X. Peng, X. Xia, X. Xu, X. Yang, B. Yang, P. Zhao, W. Yuan, P W Y. Bian, L. Chiu, Sci. Adv. 2021, 7, eabe8739. d) J. Li, A. D. Celiz, J. Yang, Q. Yang, I. Wamala, W. Whyte, B. R. Seo, N. V. Vasilyev, J. J. Vlassak, Z. Suo, D. J. Mooney, Science 2017, 357, 378.
- 14Y. Wang, C. He, C. Chen, W. Dong, X. Yang, Y. Wu, Q. Kong, B. Yan, ACS Appl. Mater. Interfaces 2022, 14, 55342.
- 15a) Dong D., Tsao C., Hung H., Yao F., Tang C., Niu L., Ma J., MacArthur J., Sinclair A., Wu K., Jain P., Hansen M. R., Ly D., Tang S. G., Luu T. M., Jain P., Jiang S., Sci. Adv. 2021, 7, eabc5442.; b) M. Yao, Z. Wei, J. Li, Z. Guo, Z. Yan, X. Sun, Q. Yu, X. Wu, C. Yu, F. Yao, S. Feng, H. Zhang, J. Li, Nat. Commun. 2022, 13, 5339. c) K. Li, H. Tang, J. Peng, S. Gao, Z. Du, G. Chen, D. Wu, G. Liu, Adv. Funct. Mater. 2024, 34, 2307760; d) K. Li, J. Peng, Y. Liu, F. Zhang, D. Wu, R. Luo, Z. Du, L. Yang, G. Liu, Y. Wang, Adv. Healthcare Mater. 2023, 12, 2300120.
- 16J. Ren, Y. Liu, Z. Wang, S. Chen, Y. Ma, H. Wei, S. Lü, Adv. Funct. Mater. 2021, 32, 2107404.
- 17J. Xiang, R. Zhu, S. Lang, H. Yan, G. Liu, B. Peng, Chem. Eng. J. 2021, 409, 128291.
- 18J. Xiang, Y. Bai, Y. Huang, S. Lang, J. Li, Y. Ji, B. Peng, G. Liu, J. Mater. Chem. B 2022, 10, 7979.
- 19X. Yao, J. Liu, C. Yang, X. Yang, J. Wei, Y. Xia, X. Gong, Z. Suo, Adv. Mater. 2019, 31, 1903062.
- 20Y. Du, Y. Bai, S. Lang, D. Xing, L. Ma, K. Li, J. Peng, X. Li, G. Liu, Biomacromolecules 2023, 24, 5313.
- 21W. C. Huang, R. Ying, W. Wang, Y. Guo, Y. He, X. Mo, C. Xue, X. Mao, Adv. Funct. Mater. 2020, 30, 2000644.
- 22a) Y. Liang, Z. Li, Y. Huang, R. Yu, B. Guo, ACS Nano 2021, 15, 7078; b) Z. Pan, Q.-Q. Fu, M.-H. Wang, H.-L. Gao, L. Dong, P. Zhou, D.-D. Cheng, Y. Chen, D.-H. Zou, J.-C. He, X. Feng, S.-H. Yu, Nat. Commun. 2023, 14, 5378.
- 23J. Mo, Y. Dai, C. Zhang, Y. Zhou, W. Li, Y. Song, C. Wu, Z. Wang, Mater. Horiz. 2021, 8, 3409.
- 24a) X. Huang, C. Chen, X. Ma, T. Zhu, W. Ma, Q. Jin, R. Du, Y. Cai, M. Zhang, D. Kong, M. Wang, J. a. Ren, Q. Zhang, X. Jia, Adv. Funct. Mater. 2023, 33, 2302846; b) Wang, G. G., Y. Zhou, T. Xu, J. Chen, R. Wang, R. Zhang, J. Fu, ACS Appl. Mater. Interfaces 2018, 11, 3506; c) H. Wang, X. Yi, T. Liu, J. Liu, Q. Wu, Y. Ding, Z. Liu, Q. Wang, Adv. Mater. 2023, 35, 2300394.
- 25X. Ding, Y. Yu, L. Fan, W. Li, F. Bian, J. Wang, Y. Zhao, Adv. Healthcare Mater. 2023, 2302588.
10.1002/adhm.202302588 Google Scholar
- 26K. Wang, Y. Zhang, T. Chen, L. Bai, H. Li, H. Tan, C. Liu, X. Qu, Composites, Part B 2023, 266, 110991.
- 27P. Bertsch, M. Diba, D. J. Mooney, S. C. G. Leeuwenburgh, Chem. Rev. 2022, 123, 834.
- 28D. Y. Zhu, Z. P. Chen, Z. P. Hong, L. Zhang, X. Liang, Y. Li, X. Duan, H. Luo, J. Peng, J. Guo, Acta Biomater. 2022, 143, 203.
- 29X. Pei, H. Zhang, Y. Zhou, L. Zhou, J. Fu, Mater. Horiz. 2020, 7, 1872.
- 30Y. Gong, P. Wang, R. Cao, J. Wu, H. Ji, M. Wang, C. Hu, P. Huang, X. Wang, ACS Nano 2023, 17, 22355.
- 31Y. W. Lee, S. Chun, D. Son, X. Hu, M. Schneider, M. Sitti, Adv. Mater. 2022, 34, 2109325.
- 32X. Du, L. Wu, H. Yan, Z. Jiang, S. Li, W. Li, Y. Bai, H. Wang, Z. Cheng, D. Kong, L. Wang, M. Zhu, Nat. Commun. 2021, 12, 4733.
- 33E. Yang, W. Hou, K. Liu, H. Yang, W. Wei, H. Kang, H. Dai, Carbohydr. Polym. 2022, 291, 119231.
10.1016/j.carbpol.2022.119631 Google Scholar
- 34Y. Li, P. Yu, J. Wen, H. Sun, D. Wang, J. Liu, J. Li, H. Chu, Adv. Funct. Mater. 2021, 32, 2110720.
- 35X. Lu, Z. Liu, Q. Jia, Q. Wang, Q. Zhang, X. Li, J. Yu, B. Ding, ACS Nano 2023, 17, 11507.
- 36a) I. Popescu, M. Turtoi, D. M. Suflet, M. V. Dinu, R. N. Darie-Nita, M. Anghelache, M. Calin, M. Constantin, Int. J. Biol. Macromol. 2021, 180, 418; b) B. Tao, C. Lin, X. Qin, Y. Yu, A. Guo, K. Li, H. Tian, W. Yi, D. Lei, Y. Chen, L. Chen, Mater. Today Bio 2022, 13, 100216.
- 37Y. Fan, M. Lüchow, Y. Zhang, J. Lin, L. Fortuin, S. Mohanty, A. Brauner, M. Malkoch, Adv. Funct. Mater. 2020, 31, 202006453.
- 38Y. Tang, G. Gong, X. He, M. Dai, M. Chen, B. Wang, Y. Wang, X. Wang, J. Guo, Adv. Healthcare Mater. 2022, 12, 2201578.
- 39Q. Wei, Y. Zhao, Y. Wei, Y. Wang, Z. Jin, G. Ma, Y. Jiang, W. Zhang, Z. Hu, Int. J. Biol. Macromol. 2023, 228, 99.
- 40Y. Liang, X. Zhao, T. Hu, B. Chen, Z. Yin, P. X. Ma, B. Guo, Small 2019, 15, 1900046.
- 41J. Xiang, R. Yu, L. Yang, P. Zhao, R. Wang, X. Wu, B. Peng, G. Liu, ACS Appl. Mater. Interfaces 2022, 14, 21645.
- 42S. Lang, Y. Du, L. Ma, Y. Bai, Y. Ji, G. Liu, Biomacromolecules 2023, 24, 1839.