Constructing Highly Emissive Covalent Organic Frameworks for Fe3+ Ion Detection via Wall Function
Ce Xing
Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103 China
Search for more papers by this authorCorresponding Author
Yuwei Zhang
Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDongxue Wei
Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103 China
Search for more papers by this authorCorresponding Author
Yongfeng Zhi
College of Chemical Engineering and Technology, Hainan University, Haikou, 570228 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCe Xing
Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103 China
Search for more papers by this authorCorresponding Author
Yuwei Zhang
Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDongxue Wei
Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103 China
Search for more papers by this authorCorresponding Author
Yongfeng Zhi
College of Chemical Engineering and Technology, Hainan University, Haikou, 570228 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Covalent organic frameworks (COFs) represent a new type of crystalline porous polymers that possess pre-designed skeletons, uniform nanopores, and ordered π structure. These attributes make them well-suited for the design of light-emitting materials. However, the majority of COFs exhibits poor luminescence due to aggregation-caused quenching (ACQ), resulting from the strong interaction between adjacent layers. To break the limitation, the building units with three methoxy groups on the walls are used to construct TM-OMe-EBTHz-COF, which suppresses the ACQ effects to improve light-emitting activity of COF. The TM-OMe-EBTHz-COF exhibits a notable emission of yellow-green luminescence in the solid state, with a remarkably high absolute quantum yield of 21.1%. The methoxy groups and hydrazine linkage form three coordination sites, contributing to excellent performance in metal ions sensing. The TM-OMe-EBTHz-COF demonstrates high sensitivity and selectivity to Fe3+ ion. Importantly, the low detection limit is below 150 nanomolar, ranking it among the best-performing Fe3+ sensor systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
marc202300678-sup-0001-SuppMat.pdf573.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Petrat, U. Rauen, H. De Groot, Hepatology 1999, 29, 1171.
- 2X. Gao, J. L. Campian, M. Qian, X.-F. Sun, J. W. Eaton, J. Biol. Chem. 2009, 284, 4767.
- 3S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548.
- 4X. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 2021, 50, 6871.
- 5J. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 2020, 49, 3565.
- 6K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Rev. 2020, 120, 8814.
- 7a) C. Lai, D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi, B. Li, S. Liu, M. Zhang, R. Deng, Y. Fu, L. Li, W. Xue, S. Chen, Chem. Soc. Rev. 2019, 48, 5266; b) Y. Zeng, R. Zou, Y. Zhao, Adv. Mater. 2016, 28, 2855.
- 8Y. Zhang, Z. Huang, B. Ruan, X. Zhang, T. Jiang, N. Ma, F.-C. Tsai, Macromol. Rapid Commun. 2020, 41, 2000402.
- 9a) Z. Li, L. Sun, L. Zhai, K.-S. Oh, J.-M. Seo, C. Li, D. Han, J.-B. Baek, S.-Y. Lee, Angew. Chem., Int. Ed. 2023, 62, 2023074; b) J. Xu, C. Yang, S. Bi, W. Wang, Y. He, D. Wu, Q. Liang, X. Wang, F. Zhang, Angew. Chem., Int. Ed. 2020, 59, 2385.
- 10L. Zhai, Y. Yao, B. Ma, M. M. Hasan, Y. Han, L. Mi, Y. Nagao, Z. Li, Macromol. Rapid Commun. 2022, 43, 2100590.
- 11C. Wu, Y. Liu, H. Liu, C. Duan, Q. Pan, J. Zhu, F. Hu, X. Ma, T. Jiu, Z. Li, Y. Zhao, J. Am. Chem. Soc. 2018, 31, 10016.
10.1021/jacs.8b06291 Google Scholar
- 12a) Z. Li, H. Moon, S.-K. Cho, C. Li, J.-M. Seo, J.-B. Baek, H. Xu, S.-Y. Lee, CCS Chem. 2023, 5, 2567; b) J.-M. Seo, J. E. Lee, H.-J. Noh, S. K. Kwak, J.-B. Baek, ACS Mater. Lett. 2022, 4, 2282.
- 13a) J.-M. Seo, H.-J. Noh, J.-P. Jeon, H. Kim, G.-F. Han, S. K. Kwak, H. Y. Jeong, L. Wang, F. Li, J.-B. Baek, J. Am. Chem. Soc. 2022, 144, 19973; b) H. Yang, R. Zhao, J. Wang, X. Yin, Z. Lu, L. Hou, ACS Mater. Lett. 2023, 5, 2877.
- 14Z. Li, Z. Zhang, R. Nie, C. Li, Q. Sun, W. Shi, W. Chu, Y. Long, H. Li, X. Liu, Adv. Funct. Mater. 2022, 32, 2112553.
- 15S. Xu, Q. Zhang, Mater. Today Energy 2021, 20, 100635.
- 16J.-Y. Zeng, X.-S. Wang, X.-Z. Zhang, Chemistry 2020, 26, 16568.
- 17H. Chen, L. Yang, M. Li, L. Kuang, Y. Song, L. Wang, Coord. Chem. Rev. 2021, 440, 213957.
10.1016/j.ccr.2021.213957 Google Scholar
- 18a) Y. Zhang, Q. Sun, Z. Li, Y. Zhi, H. Li, Z. Li, H. Xia, X. Liu, Mater. Chem. Front. 2020, 4, 3040; b) Z. Li, Y. Zhang, H. Xia, Y. Mu, X. Liu, Chem. Commun. 2016, 52, 6613.
- 19a) W. Ma, S. Jiang, W. Zhang, B. Xu, W. Tian, Macromol. Rapid Commun. 2020, 41, 2000003; b) J. Wan, W. Shi, Y. Li, Y. Yu, X. Wu, Z. Li, S. Y. Lee, K. H. Lee, Macromol. Rapid. Commun. 2022, 43, 2200393.
- 20C. Krishnaraj, A. M. Kaczmarek, H. S. Jena, K. Leus, N. Chaoui, J. Schmidt, R. Van Deun, P. Van Der Voort, ACS Appl. Mater. Interfaces 2019, 11, 27343.
- 21H.-Q. Yin, F. Yin, X.-B. Yin, Chem. Sci. 2019, 10, 11103.
- 22Z. Chen, K. Wang, Y. Tang, L. Li, X. Hu, M. Han, Z. Guo, H. Zhan, B. Chen, Angew. Chem., Int. Ed. 2023, 62, e2022132.
- 23Y. Lu, Y. Liang, Y. Zhao, M. Xia, X. Liu, T. Shen, L. Feng, N. Yuan, Q. Chen, ACS Appl. Mater. Interfaces 2021, 13, 1644.
- 24Y. Zhang, Y. Zhao, C. Zhang, X. Luo, X. Liu, CrystEngComm 2022, 24, 4496.
- 25Z. Li, K. Geng, T. He, K. T. Tan, N. Huang, Q. Jiang, Y. Nagao, D. Jiang, Angew. Chem., Int. Ed. 2021, 60, 19419.
- 26X. Li, Q. Gao, J. Wang, Y. Chen, Z.-H. Chen, H.-S. Xu, W. Tang, K. Leng, G.-H. Ning, J. Wu, Q.-H. Xu, S. Y. Quek, Y. Lu, K. P. Loh, Nat. Commun. 2018, 9, 2335.
- 27A. F. M. El-Mahdy, M.-Y. Lai, S.-W. Kuo, J. Mater. Chem. C 2020, 8, 9520.
- 28S. Wang, H. Chen, L. Chen, L. Wang, Y. Song, ACS Appl. Nano Mater 2022, 5, 1339.
- 29E. Jin, J. Li, K. Geng, Q. Jiang, H. Xu, Q. Xu, D. Jiang, Nat. Commun. 2018, 9, 4143.
- 30Y. Tang, M. Zheng, W. Xue, H. Huang, G. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 37853.
- 31H.-L. Qian, C. Dai, C.-X. Yang, X.-P. Yan, ACS Appl. Mater. Interfaces 2017, 9, 24999.
- 32H. Zuo, Y. Li, Y. Liao, ACS Appl. Mater. Interfaces 2019, 11, 39201.
- 33M.-W. Zhu, S.-Q. Xu, X.-Z. Wang, Y. Chen, L. Dai, X. Zhao, Chem. Commun. 2018, 54, 2308.
- 34L. Liao, Z. Zhang, X. Guan, H. Li, Y. Liu, M. Zhang, B. Tang, V. Valtchev, Y. Yan, S. Qiu, X. Yao, Q. Fang, Chin. J. Chem. 2022, 40, 2081.
- 35H. Zuo, Y. Li, Y. Liao, ACS Appl. Mater. Interfaces 2019, 11, 39201.
- 36P. Das, S. K. Mandal, ACS Appl. Mater. Interfaces 2021, 13, 14160.
- 37Y. Chen, R. Sun, W. Zhu, Z. Zhang, Y. Chen, S. Wang, Q. Deng, Sens. Actuators. B Chem. 2021, 344, 130216.
- 38L.-L. Wang, C.-X. Yang, X.-P. Yan, Sci. China Chem. 2018, 61, 1470.
- 39G. Chen, H.-H. Lan, S.-L. Cai, B. Sun, X.-L. Li, Z.-H. He, S.-R. Zheng, J. Fan, Y. Liu, W.-G. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 12830.
- 40C. Chen, X. Wang, L. Li, Y. Huang, R. Cao, Dalton Trans. 2018, 47, 3452.
- 41M. Li, Z. Cui, S. Pang, L. Meng, D. Ma, Y. Li, Z. Shi, S. Feng, J. Mater. Chem. C 2019, 7, 11919.
- 42W. Gong, C. Liu, H. Shi, M. Yin, W. Li, Q. Song, Y. Dong, C. Zhang, J. Mater. Chem. C 2022, 10, 3553.
- 43D.-M. Li, S.-Y. Zhang, J.-Y. Wan, W.-Q. Zhang, Y.-L. Yan, X.-H. Tang, S.-R. Zheng, S.-L. Cai, W.-G. Zhang, CrystEngComm 2021, 23, 3594.
- 44J. You, Q. Kong, C. Zhang, Y. Xian, Anal. Methods 2022, 14, 2389.