Double-Network Organohydrogels Toughened by Solvent Exchange
Jianan Li
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
Search for more papers by this authorXue Cheng
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
Search for more papers by this authorBingbing He
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
Search for more papers by this authorLonghui Li
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
Search for more papers by this authorCorresponding Author
Huan Zhang
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jie Ju
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xi Yao
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJianan Li
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
Search for more papers by this authorXue Cheng
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
Search for more papers by this authorBingbing He
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
Search for more papers by this authorLonghui Li
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
Search for more papers by this authorCorresponding Author
Huan Zhang
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jie Ju
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xi Yao
Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Double-network hydrogels based on calcium alginate are extensively exploited. Unfortunately, their low strength and unstable constitution to open environments limit their application potential. Herein, a new type of double-network organohydrogel (OHG) is proposed. By solvent exchange, a stable physical network is established based on dimethyl sulfoxide (DMSO)-alginate in the presence of a polyacrylamide network. The DMSO content endows tunable mechanical properties, with a maximum tensile strength of ≈1.7 MPa. Importantly, the OHG shows much better environmental stability compared to the conventional double-network hydrogels. Due to the reversible association of hydrogen bonds, the OHG possesses some unique properties, including free-shapeability, shape-memory, and self-adhesion, that offers several promising ways to utilize alginate-based gels for wide applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202300650-sup-0001-SuppMat.pdf1.6 MB | Supporting Information |
marc202300650-sup-0002-MovieS1.mp44.3 MB | Supporting Information Movie 1 |
marc202300650-sup-0003-MovieS2.mp44.8 MB | Supporting Information Movie 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155.
- 2X. Xu, V. V. Jerca, R. Hoogenboom, Mater. Horiz. 2021, 8, 1173.
- 3J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
- 4S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, X. Zhao, Adv. Mater. 2015, 27, 4035.
- 5S. Tang, J. Yang, L. Lin, K. Peng, Y. Chen, S. Jin, W. Yao, Chem. Eng. J. 2020, 393, 124728.
- 6X. Zhang, K. Wang, J. Hu, Y. Zhang, Y. Dai, F. Xia, J. Mater. Chem. A 2020, 8, 25390.
- 7X. Zhang, H. Geng, X. Zhang, Y. Liu, J. Hao, J. Cui, J. Mater. Chem. A 2023, 11, 2996.
- 8Z. Zhang, H. Fu, Z. Li, J. Huang, Z. Xu, Y. Lai, X. Qian, S. Zhang, Chem. Eng. J. 2022, 439, 135756.
- 9L. Li, P. Wu, F. Yu, J. Ma, J. Mater. Chem. A 2022, 10, 9215.
- 10L. X. Hou, H. Ju, X. P. Hao, H. Zhang, L. Zhang, Z. He, J. Wang, Q. Zheng, Z. L. Wu, Adv. Mater. 2023, 35, 2300244.
- 11L. Hou, P. Wu, Carbohydr. Polym. 2019, 205, 420.
- 12X. Zhang, N. Sheng, L. Wang, Y. Tan, C. Liu, Y. Xia, Z. Nie, K. Sui, Mater. Horiz. 2019, 6, 326.
- 13H. Liu, X. Hu, W. Li, M. Zhu, J. Tian, L. Li, B. Luo, C. Zhou, L. Lu, Chem. Eng. J. 2023, 452, 139368.
- 14M. M. Pérez-Madrigal, J. Torras, J. Casanovas, M. Häring, C. Alemán, D. D. Díaz, Biomacromolecules 2017, 18, 2967.
- 15P. Gurikov, I. Smirnova, Gels 2018, 4, 14.
- 16L. Xu, D. Qiu, Sci. China Mater. 2022, 65, 547.
- 17B. Guo, B. T. Stokke, A. Elgsaeter, Colloids Surf., A 1996, 112, 185.
- 18S. R. Caliari, J. A. Burdick, Nat. Methods 2016, 13, 405.
- 19H. Guo, T. Nakajima, D. Hourdet, A. Marcellan, C. Creton, W. Hong, T. Kurokawa, J. P. Gong, Adv. Mater. 2019, 31, 1900702.
- 20L. Xu, S. Gao, Q. Guo, C. Wang, Y. Qiao, D. Qiu, Adv. Mater. 2020, 32, 2004579.
- 21F. Chen, D. Zhou, J. Wang, T. Li, X. Zhou, T. Gan, S. Handschuh-Wang, X. Zhou, Angew. Chem., Int. Ed. 2018, 57, 6568.
- 22B. Xu, P. Zheng, F. Gao, W. Wang, H. Zhang, X. Zhang, X. Feng, W. Liu, Adv. Funct. Mater. 2017, 27, 1604327.
- 23Y. Wu, Y. Zhang, H. Wu, J. Wen, S. Zhang, W. Xing, H. Zhang, H. Xue, J. Gao, Y. Mai, Adv. Mater. 2023, 35, 2210624.
- 24Q. Chen, X. Yan, L. Zhu, H. Chen, B. Jiang, D. Wei, L. Huang, J. Yang, B. Liu, J. Zheng, Chem. Mater. 2016, 28, 5710.
- 25J. Cong, Z. Fan, S. Pan, J. Tian, W. Lian, S. Li, S. Wang, D. Zheng, C. Miao, W. Ding, T. Sun, T. Luo, ACS Appl. Mater. Interfaces 2021, 13, 34942.
- 26F. Yu, P. Yang, Z. Yang, X. Zhang, J. Ma, Chem. Eng. J. 2021, 426, 131900.
- 27G. Guo, Q. Wu, F. Liu, J. Yin, Z. L. Wu, Q. Zheng, J. Qian, Adv. Funct. Mater. 2022, 32, 2108548.
- 28T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, J. P. Gong, Nat. Mater. 2013, 12, 932.
- 29S. Xia, Q. Zhang, S. Song, L. Duan, G. Gao, Chem. Mater. 2019, 31, 9522.
- 30Y. Ye, H. Oguzlu, J. Zhu, P. Zhu, P. Yang, Y. Zhu, Z. Wan, O. J. Rojas, F. Jiang, Adv. Funct. Mater. 2023, 33, 2209787.
- 31M. Wang, P. Zhang, M. Shamsi, J. L. Thelen, W. Qian, V. K. Truong, J. Ma, J. Hu, M. D. Dickey, Nat. Mater. 2022, 21, 359.
- 32J. Fu, J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1336.
- 33B. Yang, Z. Wei, X. Chen, K. Wei, L. Bian, J. Mater. Chem. B 2019, 7, 1726.
- 34Y. Fang, S. Al-Assaf, G. O. Phillips, K. Nishinari, T. Funami, P. A. Williams, Carbohydr. Polym. 2008, 72, 334.
- 35L. Cao, W. Lu, A. Mata, K. Nishinari, Y. Fang, Carbohydr. Polym. 2020, 242, 116389.
- 36X. P. Morelle, W. R. Illeperuma, K. Tian, R. Bai, Z. Suo, J. J. Vlassak, Adv. Mater. 2018, 30, 1801541.
- 37Z. Zhu, W. Li, Y. Yin, R. Cao, Z. Li, J Chem 2022, 2022, 3423429.
10.1155/2022/3423429 Google Scholar
- 38Z. Cai, H. Zhao, X. Zhou, X. Chen, C. Yang, Fluid Phase Equilib. 2022, 554, 113325.
- 39Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng, Y. Zhang, Z. Tao, J. Chen, Angew. Chem., Int. Ed. 2019, 58, 16994.
- 40S. Fatima, P. C. Varras, Atia-Tul-Wahab, M. I. Choudhary, M. G. Siskos, I. P. Gerothanassis, Phys. Chem. Chem. Phys. 2021, 23, 15645.