Investigation of Degradation Mechanism of Y6-Based Inverted Organic Solar Cells and Their Utilization in Durable Near-Infrared Photodetection
Naoya Tanaka
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorCorresponding Author
Masahiro Nakano
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
E-mail: [email protected]
Search for more papers by this authorTomoki Kobayashi
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorAkira Takahara
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorTakahiro Fujinuki
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorMd. Shahiduzzaman
Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorMakoto Karakawa
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorTetsuya Taima
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorKoichi Iiyama
Division of Electrical Engineering and Computer Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorNaoya Tanaka
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorCorresponding Author
Masahiro Nakano
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
E-mail: [email protected]
Search for more papers by this authorTomoki Kobayashi
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorAkira Takahara
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorTakahiro Fujinuki
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorMd. Shahiduzzaman
Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorMakoto Karakawa
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorTetsuya Taima
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorKoichi Iiyama
Division of Electrical Engineering and Computer Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
Search for more papers by this authorAbstract
The device durability of inverted organic solar cells (OSCs) is investigated based on Y6, which is an effective nonfullerene acceptor for high-performance OSCs. The durability of Y6-based inverted OSCs is poor and it can be caused by aggregation of Y6 in the bulk-heterojunction layer due to heating by continuous photo-irradiation (≈65 °C, 100 mW cm−2, and 72 h). It is found that the aggregation of Y6 is suppressed at a low temperature (≈50 °C), and that the Y6-based devices can be useful as a photodurable near-infrared detector upon continuous laser irradiation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
marc202100718-sup-0001-SuppMat.pdf699.3 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, S. Bauer, Nat. Commun. 2012, 3, 770.
- 2C. Sun, F. Pan, H. Bin, J. Zhang, L. Xue, B. Qiu, Z. Wei, Z.-G. Zhang, Y. Li, Nat. Commun. 2018, 9, 743.
- 3L. H. Rossander, H. F. Dam, J. E. Carlé, M. Helgesen, I. Rajkovic, M. Corazza, F. C. Krebs, J. W. Andreasen, Energy Environ. Sci. 2017, 10, 2411.
- 4J. Hou, O. Inganäs, R. H. Friend, F. Gao, Nat. Mater. 2018, 17, 119.
- 5Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, Sci. Bull. 2020, 65, 272.
- 6Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 32, 1908205.
- 7C. Yan, S. Barlow, Z. Wang, H. Yan, A. K.-Y. Jen, S R. Marder, X. Zhan, Nat. Rev. Mater. 2018, 3, 18003.
- 8A. Armin, W. Li, O. J. Sandberg, Z. Xiao, L. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoaee, T. Wang, H. Ade, T. Heumüller, C. Brabec, P. Meredith, Adv. Energy Mater. 2021, 11, 2003570.
- 9Y. Wang, W.-D. Xu, J.-D. Zhang, L. Zhou, G. Lei, C.-F. Liu, W.-Y. Lai, W. Huang, J. Mater. Chem. A 2017, 5, 2460.
- 10J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140.
- 11Z. Zhong, F. Peng, Z. Huang, L. Ying, G. Yu, F. Huang, Y. Cao, ACS Appl. Mater. Interfaces 2020, 12, 45092.
- 12K. Yang, J. Wang, Z. Zhao, F. Zhao, K. Wang, X. Zhang, F. Zhang, Org. Electron. 2020, 83, 105739.
- 13M. Li, W. Zha, Y. Han, B. Liu, Q. Luo, C.-Q. Ma, Org. Electron. 2021, 96, 106257.
- 14N. Gasparini, S. H. K. Paleti, J. Bertrandie, G. Cai, G. Zhang, A. Wadsworth, X. Lu, H.-L. Yip, I. Mcculloch, D. Baran, ACS Energy Lett. 2020, 5, 1371.
- 15B.-H. Jiang, Y.-P. Wang, C.-Y. Liao, Y.-M. Chang, Y.-W. Su, R.-J. Jeng, C.-P. Chen, ACS Appl. Mater. Interfaces 2021, 13, 1076.
- 16B.-H. Jiang, P.-H. Chan, Y.-W. Su, H.-L. Hsu, R.-J. Jeng, C.-P. Chen, Org. Electron. 2020, 87, 105944.
- 17K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J.-I. Nakamura, K. Murata, Bull. Chem. Soc. Jpn. 2003, 76, 2277.
- 18T. Kuwabara, C. Tamai, Y. Omura, T. Yamaguchi, T. Taima, K. Takahashi, Org. Electron. 2013, 14, 649.
- 19M. Nakano, S. Nakagawa, F. Sato, Md. Shahiduzzaman, M. Karakawa, T. Taima, K. Takahashi, ACS Appl. Energy Mater. 2021, 4, 6385.
- 20A. Takahara, M. Nakano, Md. Shahiduzzaman, M. Karakawa, T. Taima, K. Takahashi, H. Shibata, A. Masuda, Sustainable Energy Fuels 2021, 5, 3092.
- 21M. O. Reese, S. A. Gevorgyan, M. Jørgensen, E. Bundgaard, S. R. Kurtz, D. S. Ginley, D. C. Olson, M. T. Lloyd, P. Morvillo, E. A. Katz, A. Elschner, O. Haillant, T. R. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. R. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu, D. Laird, C. Mcguiness, S. (J.). Gowrisanker, M. Pannone, M. Xiao, J. Hauch, R. Steim, D. M. Delongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J.-B. Bonekamp, A. J. J. M. Van Breemen, C. Girotto, E. Voroshazi, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2011, 95, 1253.
- 22J. Yang, Y. Geng, J. Li, B. Zhao, Q. Guo, E. Zhou, J. Phys. Chem. C 2020, 124, 24616.
- 23C. Yang, S. Zhang, J. Ren, M. Gao, P. Bi, L. Ye, J. Hou, Energy Environ. Sci. 2020, 13, 2864.
- 24T. Song, J. Tyler Mcgoffin, J. R. Sites, IEEE J. Photovoltaics 2014, 4, 942.
- 25S. R. Cowan, P. Schulz, A. J. Giordano, A. Garcia, B. A. Macleod, S. R. Marder, A. Kahn, D. S. Ginley, E. L. Ratcliff, D. C. Olson, Adv. Funct. Mater. 2014, 24, 4671.
- 26W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo, M. Riede, Appl. Phys. Lett. 2011, 98, 063301.
- 27A. Kumar, S. Sista, Y. Yang, J. Appl. Phys. 2009, 105, 094512.
- 28M. Nakano, A. Takahara, K. Genda, Md. Shahiduzzaman, M. Karakawa, T. Taima, K. Takahashi, Materials 2021, 14, 2107.
- 29S. Park, H. J. Son, J. Mater. Chem. A 2019, 7, 25830.
- 30L. Zhu, M. Zhang, G. Zhou, T. Hao, J. Xu, J. Wang, C. Qiu, N. Prine, J. Ali, W. Feng, X. Gu, Z. Ma, Z. Tang, H. Zhu, L. Ying, Y. Zhang, F. Liu, Adv. Energy Mater. 2020, 10, 1904234.
- 31T. M. Grant, T. Gorisse, O. Dautel, G. Wantz, B. H. Lessard, J. Mater. Chem. A 2017, 5, 1581.
- 32T. Liu, Q. C. Burlingame, J. C. Sorli, M. L. Ball, G. Cheng, N. Yao, Y.-L. Loo, Adv. Energy Mater. 2021, 11, 2100225.
- 33S. Khelifi, E. Voroshazi, D. Spoltore, F. Piersimoni, S. Bertho, T. Aernouts, J. Manca, J. Lauwaert, H. Vrielinck, M. Burgelman, Sol. Energy Mater. Sol. Cells 2014, 120, 244.
- 34Y. Zhu, A. Gadisa, Z. Peng, M. Ghasemi, L. Ye, Z. Xu, S. Zhao, H. Ade, Adv. Energy Mater. 2019, 9, 1900376.
- 35H. Ren, J.-D. Chen, Y.-Q. Li, J.-X. Tang, Adv. Sci. 2021, 8, 2002418.
- 36J. H. Kim, A. Liess, M. Stolte, A.-M. Krause, V. Stepanenko, C. Zhong, D. Bialas, F. Spano, F. Würthner, Adv. Mater. 2021, 33, 2100582.
- 37Z. Lan, L. Cai, D. Luo, F. Zhu, ACS Appl. Mater. Interfaces 2021, 13, 981.