Stretchable Hydrogels with Low Hysteresis and High Fracture Toughness for Flexible Electronics
Xiwei Guo
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Search for more papers by this authorJie Li
School of Mechanical Engineering, Chengdu Industry and Trade College, Chengdu, 611731 China
Search for more papers by this authorJiaxin Wang
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Search for more papers by this authorLingqi Huang
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Search for more papers by this authorGuijuan Cheng
Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Search for more papers by this authorQi Zhang
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Search for more papers by this authorCorresponding Author
He Zhu
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Mingyue Zhang
School of Mechanical Engineering, Chengdu Industry and Trade College, Chengdu, 611731 China
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shiping Zhu
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiwei Guo
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Search for more papers by this authorJie Li
School of Mechanical Engineering, Chengdu Industry and Trade College, Chengdu, 611731 China
Search for more papers by this authorJiaxin Wang
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Search for more papers by this authorLingqi Huang
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Search for more papers by this authorGuijuan Cheng
Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Search for more papers by this authorQi Zhang
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Search for more papers by this authorCorresponding Author
He Zhu
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Mingyue Zhang
School of Mechanical Engineering, Chengdu Industry and Trade College, Chengdu, 611731 China
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shiping Zhu
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Stretchable materials, especially hydrogels, are emerging in various fields recently. Many applications demand low hysteresis and high fracture toughness of the materials to be used under dynamic mechanical loads. Herein, the authors report a hydrogel with high fracture toughness and low hysteresis through using a strong metal coordination bond and relatively high crosslinking density. This design allows the sacrificial bond to remain intact under normal operation, while fracturing to dissipate mechanical energy in the fracture zone to prevent propagation of the cracks. The obtained hydrogel exhibits a low hysteresis (≈1.5%) and a high fracture toughness (≈2,164 J m−2). Moreover, the hydrogel possesses a high fatigue threshold of ≈141 J m−2 and a reasonable conductivity. This study provides a worth-adopted approach to synthesize hydrogels with low hysteresis and high fracture toughness.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202100716-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
marc202100716-sup-0002-VideoS1.mp4653.1 KB | Supplemental Video 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Y. Lee, D. J. Mooney, Chem. Rev. 2001, 101, 1869.
- 2L. Li, Y. Zhang, H. Lu, Y. Wang, J. Xu, J. Zhu, C. Zhang, T. Liu, Nat. Commun. 2020, 11, 62.
- 3B. Yang, W. Yuan, ACS Appl. Mater. Interfaces 2019, 11, 16765.
- 4X. Jing, H.-Y. Mi, Y.-J. Lin, E. Enriquez, X.-F. Peng, L.-S. Turng, ACS Appl. Mater. Interfaces 2018, 10, 20897.
- 5D. Wirthl, R. Pichler, M. Drack, G. Kettlguber, R. Moser, R. Gerstmayr, F. Hartmann, E. Bradt, R. Kaltseis, C. M. Siket, S. E. Schausberger, S. Hild, S. Bauer, M. Kaltenbrunner, Sci. Adv. 2017, 3, e1700053.
- 6S. Li, H. Pan, Y. Wang, J. Sun, J. Mater. Chem. A 2020, 8, 3667.
- 7E. R. Zhang, R. B. Bai, X. P. Morelle, Z. G. Suo, Soft Matter 2018, 14, 3563.
- 8S. Zhou, K. C. Guo, D. Bukhvalov, X. F. Zhang, W. Z. Zhu, J. F. Yao, M. He, Adv. Mater. Technol. 2020, 5, 2000358.
- 9S. Kim, A. U. Regitsky, J. Song, J. Ilavsky, G. H. Mckinley, N. Holten-Andersen, Nat. Commun. 2021, 12, 667.
- 10X. Guo, C. Zhang, L. Shi, Q. Zhang, H. Zhu, J. Mater. Chem. A 2020, 8, 20346.
- 11Y. Li, W. Li, A. Sun, M. Jing, X. Liu, L. Wei, K. Wu, Q. Fu, Mater. Horiz. 2021, 8, 267.
- 12X. Guo, L. Huang, J. Qin, Q. Zhang, H. Zhu, S. Zhu, J. Mater. Chem. A 2021, 9, 23451.
- 13Z. Wang, C. Xiang, X. Yao, P. Le Floch, J. Mendez, Z. Suo, Proc. Natl. Acad. Sci. USA 2019, 116, 5967.
- 14H. Lei, L. Dong, Y. Li, J. Zhang, H. Chen, J. Wu, Y. Zhang, Q. Fan, B. Xue, M. Qin, B. Chen, Y. Cao, W. Wang, Nat. Commun. 2020, 11, 4032.
- 15R. B. Bai, Q. S. Yang, J. D. Tang, X. P. Morelle, J. Vlassak, Z. G. Suo, Extreme Mech. Lett. 2017, 15, 91.
- 16C. P. Xiang, Z. J. Wang, C. H. Yang, X. Yao, Y. C. Wang, Z. G. Suo, Mater. Today 2020, 34, 7.
- 17Z. Gong, G. Zhang, X. Zeng, J. Li, G. Li, W. Huang, R. Sun, C. Wong, ACS Appl. Mater. Interfaces 2016, 8, 24030.
- 18A. Pourjavadi, M. Tavakolizadeh, S. H. Hosseini, N. Rabiee, M. Bagherzadeh, J. Polym. Sci. 2020, 58, 2062.
- 19J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
- 20Y. You, J. Yang, Q. Zheng, N. Wu, Z. Lv, Z. Jiang, Sci. Rep. 2020, 10, 11727.
- 21C. Shao, H. Chang, M. Wang, F. Xu, J. Yang, ACS Appl. Mater. Interfaces 2017, 9, 28305.
- 22Y. Yang, X. Wang, F. Yang, L. Wang, D. Wu, Adv. Mater. 2018, 30, 1707071.
- 23Q. Chen, X. Yan, L. Zhu, H. Chen, B. Jiang, D. Wei, L. Huang, J. Yang, B. Liu, J. Zheng, Chem. Mater. 2016, 28, 5710.
- 24L. Zhu, J. Qiu, E. Sakai, K. Ito, ACS Appl. Mater. Interfaces 2017, 9, 13593.
- 25T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M.. A. Haque, T. Nakajima, J. P. Gong, Nat. Mater. 2013, 12, 932.
- 26W. Cui, D. R. King, Y. W. Huang, L. Chen, T. L. Sun, Y. Z. Guo, Y. Saruwatari, C. Y. Hui, T. Kurokawa, J. P. Gong, Adv. Mater. 2020, 32, 1907180.
- 27X.-H. Wang, F. Song, D. Qian, Y.-D. He, W.-C. Nie, X.-L. Wang, Y.-Z. Wang, Chem. Eng. J. 2018, 349, 588.
- 28F. Chen, Z. Tang, S. Lu, L. Zhu, Q. Wang, Q. Gang, J. Yang, Q. Chen, Polymer 2019, 168, 159.
- 29F. Chen, Q. Chen, L. Zhu, Z. Tang, Q. Li, G. Qin, J. Yang, Y. Zhang, B. Ren, J. Zheng, Chem. Mater. 2018, 30, 1743.
- 30W. Zhang, J. Hu, J. Tang, Z. Wang, J. Wang, T. Lu, Z. Suo, ACS Macro Lett. 2019, 8, 17.
- 31R. Bai, J. Yang, X. P. Morelle, C. Yang, Z. Suo, ACS Macro Lett. 2018, 7, 312.
- 32G. Su, J. Cao, X. Zhang, Y. Zhang, S. Yin, L. Jia, Q. Guo, X. Zhang, J. Zhang, T. Zhou, J. Mater. Chem. A 2020, 8, 2074.
- 33W. L. Zhang, X. Liu, J. K. Wang, J. D. Tang, J. Hu, T. Q. Lu, Z. G. Suo, Eng. Fract. Mech. 2018, 187, 74.
- 34J. Tang, J. Li, J. J. Vlassak, Z. Suo, Extreme Mech. Lett. 2017, 10, 24.
- 35S. T. Lin, X. Y. Liu, J. Liu, H. Yuk, H. C. Loh, G. A. Parada, C. Settens, J. Song, A. Masic, G. H. McKinley, X. H. Zhao, Sci. Adv. 2019, 5, eaau8528.
- 36S. Lin, J. Liu, X. Liu, X. Zhao, Proc. Natl. Acad. Sci. USA 2019, 116, 10244.
- 37R. Bai, Q. Yang, J. Tang, X. P. Morelle, J. Vlassak, Z. Suo, Extreme Mech. Lett. 2017, 15, 91.
- 38X. Li, K. Cui, T. L. Sun, L. Meng, C. Yu, L. Li, C. Creton, T. Kurokawa, J. P. Gong, Proc. Natl. Acad. Sci. USA 2020, 117, 7606.
- 39Z. Wang, Y. Cong, J. Fu, J. Mater. Chem. B 2020, 8, 3437.
- 40B. Liang, Z. Lin, W. Chen, Z. He, J. Zhong, H. Zhu, Z. Tang, X. Gui, Nanoscale 2018, 10, 13599.