Controlling Properties and Functions of Polymer Gels Using Photochemical Reactions
Jingning Cao
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDachuan Zhang
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorYang Zhou
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Qijin Zhang
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Si Wu
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected], [email protected]
Search for more papers by this authorJingning Cao
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDachuan Zhang
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorYang Zhou
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Qijin Zhang
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Si Wu
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Photoresponsive polymer gels have attracted increasing interest owing to their potential applications in healable materials, drug release systems, and extracellular matrices. Because polymer gels provide suitable environments for photochemical reactions, their properties and functions can be controlled with light with a high spatiotemporal resolution. Herein, the design of photoresponsive polymer gels based on different types of photochemical reactions is introduced. The mechanism and applications of irreversible photoreactions, such as photoinduced free-radical polymerization, photoinduced click reactions, and photolysis, as well as reversible photoreactions such as photoinduced reversible cycloadditions, reversible photosubstitution of metal complexes, and photoinduced metathesis are reviewed. The remaining challenges of photoresponsive polymer gels are also discussed.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1C. Liu, N. Morimoto, L. Jiang, S. Kawahara, T. Noritomi, H. Yokoyama, K. Mayumi, K. Ito, Science 2021, 372, 1078.
- 2Y. S. Zhang, A. Khademhosseini, Science 2017, 356, eaaf3627.
- 3T. E. Brown, K. S. Anseth, Chem. Soc. Rev. 2017, 46, 6532.
- 4A. Sydney Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, J. A. Lewis, Nat. Mater. 2016, 15, 413.
- 5Y. Li, J. Rodrigues, H. Tomás, Chem. Soc. Rev. 2012, 41, 2193.
- 6J. Li, R. Xing, S. Bai, X. Yan, Soft Matter 2019, 15, 1704.
- 7H. Li, G. Gao, Z. Xu, D. Tang, T. Chen, Macromol. Rapid Commun. 2021, 42, 2100480.
- 8N. Sood, A. Bhardwaj, S. Mehta, A. Mehta, Drug Delivery 2016, 23, 748.
- 9M. C. Koetting, J. T. Peters, S. D. Steichen, N. A. Peppas, Mater. Sci. Eng.: R 2015, 93, 1.
- 10J. S. Kahn, Y. Hu, I. Willner, Acc. Chem. Res. 2017, 50, 680.
- 11C. Ma, W. Lu, X. Yang, J. He, X. Le, L. Wang, J. Zhang, M. J. Serpe, Y. Huang, T. Chen, Adv. Funct. Mater. 2018, 28, 1704568.
- 12F. Xu, G. Li, S. Han, G. Wang, Chem. J. Chin.Univ. 2022, 43, 20210337.
- 13H. Yao, Z. Yang, X. Fan, X. Song, J. He, W. Tian, Mater. Chem. Front. 2019, 3, 1168.
- 14Y. Liu, S. Sun, S. Wu, Chin. J. Chem. 2020, 38, 1019.
- 15L. Li, J. M. Scheiger, P. A. Levkin, Adv. Mater. 2019, 31, 1807333.
- 16J. T. Foy, Q. Li, A. Goujon, J.-R. Colard-Itté, G. Fuks, E. Moulin, O. Schiffmann, D. Dattler, D. P. Funeriu, N. Giuseppone, Nat. Nanotechnol. 2017, 12, 540.
- 17Q. Li, G. Fuks, E. Moulin, M. Maaloum, M. Rawiso, I. Kulic, J. T. Foy, N. Giuseppone, Nat. Nanotechnol. 2015, 10, 161.
- 18C. Li, A. Iscen, L. C. Palmer, G. C. Schatz, S. I. Stupp, J. Am. Chem. Soc. 2020, 142, 8447.
- 19H. Zhu, H. Yang, Y. Ma, T. J. Lu, F. Xu, G. M. Genin, M. Lin, Adv. Funct. Mater. 2020, 30, 2000639.
- 20M. Lee, R. Rizzo, F. Surman, M. Zenobi-Wong, Chem. Rev. 2020, 120, 10950.
- 21T. L. Rapp, C. A. Deforest, Adv. Drug. Delivery Rev. 2021, 171, 94.
- 22J. L. Pelloth, P. A. Tran, A. Walther, A. S. Goldmann, H. Frisch, V. X. Truong, C. Barner-Kowollik, Adv. Mater. 2021, 33, 2102184.
- 23V. X. Truong, F. Li, F. Ercole, J. S. Forsythe, ACS Macro Lett. 2018, 7, 464.
- 24C. Nie, C. Liu, S. Sun, S. Wu, ChemPhotoChem 2021, 5, 893.
- 25M. Vázquez-González, I. Willner, Angew. Chem., Int. Ed. 2020, 59, 15342.
- 26J. A. Mccune, S. Mommer, C. C. Parkins, O. A. Scherman, Adv. Mater. 2020, 32, 1906890.
- 27W. Hu, Z. Wang, Y. Xiao, S. Zhang, J. Wang, Biomater. Sci. 2019, 7, 843.
- 28W. E. Hennink, C. F. Van Nostrum, Adv. Drug. Delivery Rev. 2012, 64, 223.
- 29M. Chen, M. Zhong, J. A. Johnson, Chem. Rev. 2016, 116, 10167.
- 30A. Bagheri, C. M. Fellows, C. Boyer, Adv. Sci. 2021, 8, 2003701.
- 31A. K. O'brien, C. N. Bowman, Macromolecules 2006, 39, 2501.
- 32H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int. Ed. 2001, 40, 2004.
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 33Y. Jiang, J. Chen, C. Deng, E. J. Suuronen, Z. Zhong, Biomaterials 2014, 35, 4969.
- 34M. A. Tasdelen, Y. Yagci, Angew. Chem., Int. Ed. 2013, 52, 5930.
- 35C. A. Deforest, B. D. Polizzotti, K. S. Anseth, Nat. Mater. 2009, 8, 659.
- 36B. J. Adzima, Y. Tao, C. J. Kloxin, C. A. Deforest, K. S. Anseth, C. N. Bowman, Nat. Chem. 2011, 3, 256.
- 37H. Zhao, E. S. Sterner, E. B. Coughlin, P. Theato, Macromolecules 2012, 45, 1723.
- 38C. Zhu, C. Ninh, C. J. Bettinger, Biomacromolecules 2014, 15, 3474.
- 39M. J. Hansen, W. A. Velema, M. M. Lerch, W. Szymanski, B. L. Feringa, Chem. Soc. Rev. 2015, 44, 3358.
- 40C. Bao, L. Zhu, Q. Lin, H. Tian, Adv. Mater. 2015, 27, 1647.
- 41I. Tomatsu, K. Peng, A. Kros, Adv. Drug. Delivery Rev. 2011, 63, 1257.
- 42S. R. Trenor, A. R. Shultz, B. J. Love, T. E. Long, Chem. Rev. 2004, 104, 3059.
- 43T. Furuta, S. S.- H. Wang, J. L. Dantzker, T. M. Dore, W. J. Bybee, E. M. Callaway, W. Denk, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 1999, 96, 1193.
- 44Z. Liu, Q. Lin, Y. Sun, T. Liu, C. Bao, F. Li, L. Zhu, Adv. Mater. 2014, 26, 3912.
- 45J. M. Scheiger, P. A. Levkin, Adv. Funct. Mater. 2020, 30, 1909800.
- 46L. Li, J. M. Scheiger, T. Tronser, C. Long, K. Demir, C. L. Wilson, M. A. Kuzina, P. A. Levkin, Adv. Funct. Mater. 2019, 29, 1902906.
- 47R. T. Chen, S. Marchesan, R. A. Evans, K. E. Styan, G. K. Such, A. Postma, K. M. Mclean, B. W. Muir, F. Caruso, Biomacromolecules 2012, 13, 889.
- 48X.-H. Qin, X. Wang, M. Rottmar, B. J. Nelson, K. Maniura-Weber, Adv. Mater. 2018, 30, 1705564.
- 49J. C. Grim, T. E. Brown, B. A. Aguado, D. A. Chapnick, A. L. Viert, X. Liu, K. S. Anseth, ACS Cent. Sci. 2018, 4, 909.
- 50D. P. Nair, M. Podgórski, S. Chatani, T. Gong, W. Xi, C. R. Fenoli, C. N. Bowman, Chem. Mater. 2013, 26, 724.
- 51Y. Zheng, Z. Chen, Q. Jiang, J. Feng, S. Wu, A. Del Campo, Nanoscale 2020, 12, 13654.
- 52M. J. Salierno, A. J. García, A. Del Campo, Adv. Funct. Mater. 2013, 23, 5974.
- 53Z. Ming, J. Fan, C. Bao, Y. Xue, Q. Lin, L. Zhu, Adv. Funct. Mater. 2018, 28, 1706918.
- 54A. Farrukh, J. I. Paez, A. Del Campo, Adv. Funct. Mater. 2019, 29, 1807734.
- 55C. K. Arakawa, B. A. Badeau, Y. Zheng, C. A. Deforest, Adv. Mater. 2017, 29, 1703156.
- 56J. You, A. Haque, D.-S. Shin, K. J. Son, C. Siltanen, A. Revzin, Adv. Funct. Mater. 2015, 25, 4650.
- 57A. M. Kloxin, M. W. Tibbitt, A. M. Kasko, J. A. Fairbairn, K. S. Anseth, Adv. Mater. 2010, 22, 61.
- 58A. M. Castilla, E. R. Draper, M. C. Nolan, C. Brasnett, A. Seddon, L. L. E. Mears, N. Cowieson, D. J. Adams, Sci. Rep. 2017, 7, 8380.
- 59S. Li, Y. Zeng, W. Hou, W. Wan, J. Zhang, Y. Wang, X. Du, Z. Gu, Mater. Horiz. 2020, 7, 2944.
- 60Y. Zhang, P. P. Y. Chan, A. E. Herr, Angew. Chem., Int. Ed. 2018, 57, 2357.
- 61C. Jungnickel, M. V. Tsurkan, K. Wogan, C. Werner, M. Schlierf, Adv. Mater. 2017, 29, 1603327.
- 62K. A. Günay, T. L. Ceccato, J. S. Silver, K. L. Bannister, O. J. Bednarski, L. A. Leinwand, K. S. Anseth, Angew. Chem., Int. Ed. 2019, 58, 9912.
- 63V. X. Truong, F. Li, J. S. Forsythe, ACS Macro Lett. 2017, 6, 657.
- 64H. Zhou, M. Chen, Y. Liu, S. Wu, Macromol. Rapid Commun. 2018, 39, 1800372.
- 65J. Han, Y.-S. Huang, N. Yang, S. Wu, Adv. Intell. Syst. 2020, 2, 2000112.
- 66J. Liu, C. Xie, A. Kretzschmann, K. Koynov, H.-J. Butt, S. Wu, Adv. Mater. 2020, 32, 1908324.
- 67J. Han, C. Xie, Y.-S. Huang, M. Wagner, W. Liu, X. Zeng, J. Liu, S. Sun, K. Koynov, H.-J. Butt, S. Wu, J. Am. Chem. Soc. 2021, 143, 12736.
- 68W. Sun, S. Li, B. Häupler, J. Liu, S. Jin, W. Steffen, U. S. Schubert, H.-J. Butt, X.-J. Liang, S. Wu, Adv. Mater. 2017, 29, 1603702.
- 69X. Zeng, Y. Wang, J. Han, W. Sun, H.-J. Butt, X.-J. Liang, S. Wu, Adv. Mater. 2020, 32, 2004766.
- 70M. Chen, W. Sun, A. Kretzschmann, H.-J. Butt, S. Wu, J. Inorg. Biochem. 2020, 207, 111052.
- 71Y. Amamoto, J. Kamada, H. Otsuka, A. Takahara, K. Matyjaszewski, Angew. Chem., Int. Ed. 2011, 50, 1660.
- 72D. Lu, M. Zhu, S. Wu, Q. Lian, W. Wang, D. Adlam, J. A. Hoyland, B. R. Saunders, Adv. Funct. Mater. 2020, 30, 1909359.
- 73P. Froimowicz, H. Frey, K. Landfester, Macromol. Rapid Commun. 2011, 32, 468.
- 74T. L. Rapp, C. B. Highley, B. C. Manor, J. A. Burdick, I. J. Dmochowski, Chem. - Eur. J. 2018, 24, 2328.
- 75T. L. Rapp, Y. Wang, M. A. Delessio, M. R. Gau, I. J. Dmochowski, RSC Adv. 2019, 9, 4942.
- 76I. Teasdale, S. Theis, A. Iturmendi, M. Strobel, S. Hild, J. Jacak, P. Mayrhofer, U. Monkowius, Chem. - Eur. J. 2019, 25, 9851.
- 77S. Theis, A. Iturmendi, C. Gorsche, M. Orthofer, M. Lunzer, S. Baudis, A. Ovsianikov, R. Liska, U. Monkowius, I. Teasdale, Angew. Chem., Int. Ed. 2017, 56, 15857.
- 78B. D. Fairbanks, S. P. Singh, C. N. Bowman, K. S. Anseth, Macromolecules 2011, 44, 2444.
- 79S. L. Banerjee, K. Bhattacharya, S. Samanta, N. K. Singha, ACS Appl. Mater. Interfaces 2018, 10, 27391.
- 80J. Rickhoff, N. V. Cornelissen, T. Beuse, A. Rentmeister, B. Jan Ravoo, Chem. Commun. 2021, 57, 5913.
- 81F. Klepel, B. J. Ravoo, Org. Biomol. Chem. 2017, 15, 3840.
- 82P. Dong, K. Cui, F. Xu, T. Jiang, Z. Ma, Polym. Int. 2018, 67, 868.
- 83G. L. Fiore, S. J. Rowan, C. Weder, Chem. Soc. Rev. 2013, 42, 7278.
- 84R. J. Wojtecki, M. A. Meador, S. J. Rowan, Nat. Mater. 2011, 10, 14.
- 85M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, C. Weder, Nature 2011, 472, 334.
- 86N. Zheng, Y. Xu, Q. Zhao, T. Xie, Chem. Rev. 2021, 121, 1716.
- 87Z. Wei, J. H. Yang, J. Zhou, F. Xu, M. Zrínyi, P. H. Dussault, Y. Osada, Y. M. Chen, Chem. Soc. Rev. 2014, 43, 8114.
- 88D. L. Taylor, M. In, H. Panhuis, Adv. Mater. 2016, 28, 9060.
- 89M. B. Gordon, J. M. French, N. J. Wagner, C. J. Kloxin, Adv. Mater. 2015, 27, 8007.
- 90Y. Huang, N. Yang, Z. Wu, S. Wu, Chem. J. Chin. Univ. 2020, 41, 1174.
- 91J. Liu, H.-J. Butt, S. Wu, Adv. Funct. Mater. 2020, 30, 1907605.
- 92H. Banerjee, M. Suhail, H. Ren, Biomimetics 2018, 3, 15.
- 93X. Le, W. Lu, J. Zhang, T. Chen, Adv. Sci. 2019, 6, 1801584.
- 94F.-M. Cheng, H.-X. Chen, H.-D. Li, J. Mater. Chem. B 2021, 9, 1762.
- 95M. Xiao, M. J. Cheng, F. Shi, Sci. Sin.: Chim. 2017, 47, 40.
10.1360/N032016-00161 Google Scholar
- 96H. Cui, Q. Zhao, Y. Wang, X. Du, Chem. Asian J. 2019, 14, 2369.
- 97S.-L. Xiang, Y.-X. Su, H. Yin, C. Li, M.-Q. Zhu, Nano Energy 2021, 85, 105965.
- 98L. Ionov, Mater. Today 2014, 17, 494.
- 99P. Techawanitchai, M. Ebara, N. Idota, T.-A. Asoh, A. Kikuchi, T. Aoyagi, Soft Matter 2012, 8, 2844.
- 100T. Vermonden, R. Censi, W. E. Hennink, Chem. Rev. 2012, 112, 2853.
- 101C. A. Dreiss, Curr. Opin. Colloid Interface Sci. 2020, 48, 1.
- 102T. L. Rapp, C. A. Deforest, Adv. Healthcare Mater. 2020, 9, 1901553.
- 103W. Sun, R. Thiramanas, L. D. Slep, X. Zeng, V. Mailänder, S. Wu, Chem. – Eur. J. 2017, 23, 10832.
- 104Z. Chen, W. Sun, H.-J. Butt, S. Wu, Chem. – Eur. J. 2015, 21, 9165.
- 105S. Wu, H.-J. Butt, Adv. Mater. 2016, 28, 1208.
- 106Y. Liu, S. Liang, C. Yuan, A. Best, M. Kappl, K. Koynov, H.-J. Butt, S. Wu, Adv. Funct. Mater. 2021, 31, 2103908.
- 107B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, Y. Zhao, J. Am. Chem. Soc. 2012, 134, 16558.
- 108S. A. Fisher, A. E. G. Baker, M. S. Shoichet, J. Am. Chem. Soc. 2017, 139, 7416.
- 109J. A. Shadish, A. C. Strange, C. A. Deforest, J. Am. Chem. Soc. 2019, 141, 15619.
- 110J. M. Unagolla, A. C. Jayasuriya, Appl. Mater. Today 2020, 18, 100479.
- 111P. M. Kharkar, K. L. Kiick, A. M. Kloxin, Chem. Soc. Rev. 2013, 42, 7335.
- 112Y. Luo, M. S. Shoichet, Nat. Mater. 2004, 3, 249.
- 113C. A. Deforest, K. S. Anseth, Angew. Chem., Int. Ed. 2012, 51, 1816.
- 114A. M. Kloxin, A. M. Kasko, C. N. Salinas, K. S. Anseth, Science 2009, 324, 59.
- 115T. T. Lee, J. R. García, J. I. Paez, A. Singh, E. A. Phelps, S. Weis, Z. Shafiq, A. Shekaran, A. Del Campo, A. J. García, Nat. Mater. 2015, 14, 352.
- 116C. N. Zhu, C. Y. Li, H. Wang, W. Hong, F. Huang, Q. Zheng, Z. L. Wu, Adv. Mater. 2021, 33, 2008057.
- 117L. Ouyang, C. B. Highley, W. Sun, J. A. Burdick, Adv. Mater. 2017, 29, 1604983.
- 118Z. Ming, X. Ruan, C. Bao, Q. Lin, Y. Yang, L. Zhu, Adv. Funct. Mater. 2017, 27, 1606258.