Unraveling Sequence Effect on Glass Transition Temperatures of Discrete Unconjugated Oligomers
Ruizhe Liu
School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052 Australia
Search for more papers by this authorChao Yang
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorZixuan Huang
School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052 Australia
Search for more papers by this authorRohan French
School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052 Australia
Search for more papers by this authorZi Gu
School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052 Australia
Search for more papers by this authorJianli Cheng
Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 P. R. China
Search for more papers by this authorCorresponding Author
Kunkun Guo
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jiangtao Xu
School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052 Australia
E-mail: [email protected], [email protected]
Search for more papers by this authorRuizhe Liu
School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052 Australia
Search for more papers by this authorChao Yang
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorZixuan Huang
School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052 Australia
Search for more papers by this authorRohan French
School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052 Australia
Search for more papers by this authorZi Gu
School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052 Australia
Search for more papers by this authorJianli Cheng
Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 P. R. China
Search for more papers by this authorCorresponding Author
Kunkun Guo
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jiangtao Xu
School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052 Australia
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Sequence plays a critical role in enabling unique properties and functions of natural biomolecules, which has promoted the rapid advancement of synthetic sequence-defined polymers in recent decades. Particularly, investigation of short chain sequence-defined oligomers (also called discrete oligomers) on their properties has become a hot topic. However, most studies have focused on discrete oligomers with conjugated structures. In contrast, unconjugated oligomers remain relatively underexplored. In this study, three pairs of discrete oligomers with the same composition but different sequence for each pair are employed for investigating their glass transition temperatures (Tgs). The resultant Tgs of sequenced oligomers in each pair are found to be significantly different (up to 11.6 °C), attributable to variations in molecular packing as demonstrated by molecular dynamics and density function theory simulations. Intermolecular interaction is demonstrated to have less impact on Tgs than intramolecular interaction. The mechanistic investigation into two model dimers suggests that monomer sequence caused the difference in intramolecular rotational flexibility of the sequenced oligomers. In addition, despite having different monomer sequence and Tgs, the oligomers have very similar solubility parameters, which supports their potential use as effective oligomeric plasticizers to tune the Tgs of bulk polymer materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
marc202100666-sup-0001-SuppMat.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Schmidt, N. Fechler, J. Falkenhagen, J.-F. Lutz, Nat. Chem. 2011, 3, 234.
- 2J.-F. Lutz, Polym. Chem. 2010, 1, 55.
- 3J.-F. Lutz, Macromol. Rapid Commun. 2017, 38, 1700582.
- 4M. A. Washington, D. J. Swiner, K. R. Bell, M. V. Fedorchak, S. R. Little, T. Y. Meyer, Biomaterials 2017, 117, 66.
- 5B. Genabeek, B. A. G. Lamers, C. J. Hawker, E. W. Meijer, W. R. Gutekunst, B. Schmidt, J. Polym. Sci. 2021, 59, 373.
- 6M. A. R. Meier, C. Barner-Kowollik, Adv. Mater. 2019, 31, 1806027.
- 7E. Maron, J. H. Swisher, J. J. Haven, T. Y. Meyer, T. Junkers, H. G. Börner, Angew. Chem., Int. Ed. 2019, 58, 10747.
- 8K. Nishimori, M. Ouchi, Chem. Commun. 2020, 56, 3473.
- 9M. Rutten, F. W. Vaandrager, J. Elemans, R. J. M. Nolte, Nat. Rev. Chem. 2018, 2, 365.
- 10A. S. Carlini, L. Adamiak, N. C. Gianneschi, Macromolecules 2016, 49, 4379.
- 11G. Gody, T. Maschmeyer, P. B. Zetterlund, S. Perrier, Nat. Commun. 2013, 4, 2505.
- 12A. H. Soeriyadi, C. Boyer, F. Nyström, P. B. Zetterlund, M. R. Whittaker, J. Am. Chem. Soc. 2011, 133, 11128.
- 13N. G. Engelis, A. Anastasaki, G. Nurumbetov, N. P. Truong, V. Nikolaou, A. Shegiwal, M. R. Whittaker, T. P. Davis, D. M. Haddleton, Nat. Chem. 2017, 9, 171.
- 14J. Huang, S. R. Turner, Polymer 2017, 116, 572.
- 15K. Nishimori, M. Sawamoto, M. Ouchi, J. Polym. Sci. A, Polym. Chem. 2019, 57, 367.
- 16S. Li, C. Yu, Y. Zhou, Sci. China Chem. 2019, 62, 226.
- 17J. Chen, C. Yu, Z. Shi, S. Yu, Z. Lu, W. Jiang, M. Zhang, W. He, Y. Zhou, D. Yan, Angew. Chem., Int. Ed. 2015, 54, 3621.
- 18M. Ouchi, M. Nakano, T. Nakanishi, M. Sawamoto, Angew. Chem., Int. Ed. 2016, 55, 14584.
- 19Y. Kametani, F. Tournilhac, M. Sawamoto, M. Ouchi, Angew. Chem., Int. Ed. 2020, 59, 5193.
- 20Y. Kametani, M. Ouchi, ACS Polym. Au 2021, 1, 10.
- 21M. Miyajima, K. Satoh, M. Kamigaito, Polym. Chem. 2021, 12, 423.
- 22K. Satoh, M. Matsuda, K. Nagai, M. Kamigaito, J. Am. Chem. Soc. 2010, 132, 10003.
- 23M. Miyajima, K. Satoh, T. Horibe, K. Ishihara, M. Kamigaito, J. Am. Chem. Soc. 2020, 142, 18955.
- 24J. Li, R. M. Stayshich, T. Y. Meyer, J. Am. Chem. Soc. 2011, 133, 6910.
- 25J. Li, S. N. Rothstein, S. R. Little, H. M. Edenborn, T. Y. Meyer, J. Am. Chem. Soc. 2012, 134, 16352.
- 26T. Terashima, T. Mes, T. F. A. De Greef, M. A. J. Gillissen, P. Besenius, A. R. A. Palmans, E. W. Meijer, J. Am. Chem. Soc. 2011, 133, 4742.
- 27O. Altintas, C. Barner-Kowollik, Macromol. Rapid Commun. 2016, 37, 29.
- 28J. De Neve, J. J. Haven, L. Maes, T. Junkers, Polym. Chem. 2018, 9, 4692.
- 29J. Xu, C. Fu, S. Shanmugam, C. J. Hawker, G. Moad, C. Boyer, Angew. Chem., Int. Ed. 2017, 56, 8376.
- 30Z. Huang, B. B. Noble, N. Corrigan, Y. Chu, K. Satoh, D. S. Thomas, C. J. Hawker, G. Moad, M. Kamigaito, M. L. Coote, C. Boyer, J. Xu, J. Am. Chem. Soc. 2018, 140, 13392.
- 31J. Lawrence, S-Ho Lee, A. Abdilla, M. D. Nothling, J. M. Ren, A. S. Knight, C. Fleischmann, Y. Li, A. S. Abrams, B. Schmidt, M. C. Hawker, L. A. Connal, A. J. Mcgrath, P. G. Clark, W. R. Gutekunst, C. J. Hawker, J. Am. Chem. Soc. 2016, 138, 6306.
- 32J. Xu, Macromolecules 2019, 52, 9068.
- 33T. Mondal, M. Nerantzaki, K. Flesch, C. Loth, M. Maaloum, Y. Cong, S. S. Sheiko, J.-F. Lutz, Macromolecules 2021, 54, 3423.
- 34R. Szweda, M. Tschopp, O. Felix, G. Decher, J.-F. Lutz, Angew. Chem., Int. Ed. 2018, 57, 15817.
- 35F. A. Leibfarth, J. A. Johnson, T. F. Jamison, Proc. Natl. Acad. Sci. USA 2015, 112, 10617.
- 36S. Martens, J. Van Den Begin, A. Madder, F. E. Du Prez, P. Espeel, J. Am. Chem. Soc. 2016, 138, 14182.
- 37J. O. Holloway, C. Mertens, F. E. Du Prez, N. Badi, Macromol. Rapid Commun. 2019, 40, 1800685.
- 38Z. Huang, J. Zhao, Z. Wang, F. Meng, K. Ding, X. Pan, N. Zhou, X. Li, Z. Zhang, X. Zhu, Angew. Chem., Int. Ed. 2017, 56, 13612.
- 39Y. Ji, L. Zhang, X. Gu, W. Zhang, N. Zhou, Z. Zhang, X. Zhu, Angew. Chem., Int. Ed. 2017, 56, 2328.
- 40J. -. F. Lutz, M. Ouchi, D. R. Liu, M. Sawamoto, Science 2013, 341, 1238149.
- 41Y. Kametani, M. Sawamoto, M. Ouchi, Angew. Chem., Int. Ed. 2018, 57, 10905.
- 42K. Launay, J.-A. Amalian, E. Laurent, L. Oswald, A. Al Ouahabi, A. Burel, F. Dufour, C. Carapito, J.-L. Clément, J.-F. Lutz, L. Charles, D. Gigmes, Angew. Chem., Int. Ed. 2021, 60, 917.
- 43J.-F. Lutz, ACS Macro Lett. 2020, 9, 185.
- 44M. R. Golder, Y. Jiang, P. E. Teichen, H. V.-T. Nguyen, W. Wang, N. Milos, S. A. Freedman, A. P. Willard, J. A. Johnson, J. Am. Chem. Soc. 2018, 140, 1596.
- 45Z. Huang, Q. Shi, J. Guo, F. Meng, Y. Zhang, Y. Lu, Z. Qian, X. Li, N. Zhou, Z. Zhang, X. Zhu, Nat. Commun. 2019, 10, 1918.
- 46S. Zhang, N. E. Bauer, I. Y. Kanal, W. You, G. R. Hutchison, T. Y. Meyer, Macromolecules 2017, 50, 151.
- 47P. Chandra, A. M. Jonas, A. E. Fernandes, J. Am. Chem. Soc. 2018, 140, 5179.
- 48Qi Xiao, S. Zhang, Z. Wang, S. E. Sherman, R.-O. Moussodia, M. Peterca, A. Muncan, D. R. Williams, D. A. Hammer, S. Vértesy, S. André, H.- J. Gabius, M. L. Klein, V. Percec, Proc. Natl. Acad. Sci. USA 2016, 113, 1162.
- 49X. Yu, J. Jia, S. Xu, KaUn Lao, M. J. Sanford, R. K. Ramakrishnan, S. I. Nazarenko, T. R. Hoye, G. W. Coates, R. A. Distasio, Nat. Commun. 2018, 9, 2880.
- 50H. Staudinger, Ber. Dtsch. Chem. Ges. 1920, 53, 1073.
- 51J. Lawrence, E. Goto, J. M. Ren, B. Mcdearmon, D. S. Kim, Y. Ochiai, P. G. Clark, D. Laitar, T. Higashihara, C. J. Hawker, J. Am. Chem. Soc. 2017, 139, 13735.
- 52R. V. Schneider, K. A. Waibel, A. P. Arndt, M. Lang, R. Seim, D. Busko, S. Bräse, U. Lemmer, M. A. R. Meier, Sci. Rep. 2018, 8, 17483.
- 53B. Dumslaff, A. N. Reuss, M. Wagner, X. Feng, A. Narita, G. Fytas, K. Müllen, Angew. Chem., Int. Ed. 2017, 56, 10602.
- 54S. Zhang, G. R. Hutchison, T. Y. Meyer, Macromol. Rapid Commun. 2016, 37, 882.
- 55B. N. Norris, S. Zhang, C. M. Campbell, J. T. Auletta, P. Calvo-Marzal, G. R. Hutchison, T. Y. Meyer, Macromolecules 2013, 46, 1384.
- 56T. Soejima, K. Satoh, M. Kamigaito, J. Am. Chem. Soc. 2016, 138, 944.
- 57R. Liu, L. Zhang, Z. Huang, J. Xu, Polym. Chem. 2020, 11, 4557.
- 58G. E. Ham, J. Polym. Sci. 1954, 14, 87.
- 59Q. Yang, X. Chen, Z. He, F. Lan, H. Liu, RSC Adv. 2016, 6, 12053.
- 60K. K. Bejagam, C. N. Iverson, B. L. Marrone, G. Pilania, Phys. Chem. Chem. Phys. 2020, 22, 17880.
- 61J. Han, R. H. Gee, R. H. Boyd, Macromolecules 1994, 27, 7781.
- 62R. P. White, J. E. G. Lipson, Macromolecules 2016, 49, 3987.
- 63W.-S. Xu, J. F. Douglas, Z.-Y. Sun, Macromolecules 2021, 54, 3001.
- 64J. Dudowicz, K. F. Freed, J. F. Douglas, Adv. Chem. Phys. 2007, 137, 125.
- 65G. R. Strobl, The Physics of Polymers. Concepts for Understanding Their Structures and Behavior, Springer, New York 2007.
- 66G. Natta, P. Corradini, J. Polym. Sci. 1959, 39, 29.
- 67C. Li, Li Han, H. Ma, H. Shen, L. Yang, P. Liu, X. Hao, Y. Li, Polym. Chem. 2019, 10, 2758.
- 68F. Yao, Q. Liu, Z. Zhang, X. Zhu, Polymers 2017, 9, 89.
- 69C. Li, A. Strachan, Polymer 2018, 135, 162.
- 70M. Almasi, Chem. Phys. 2020, 539, 110936.
- 71J. Shen, E. Yildirim, S. Li, Y. Caydamli, M. A. Pasquinelli, A. E. Tonelli, Macromolecules 2019, 52, 3897.
- 72A. Navarro, M. P. Fernández-Liencres, T. Peña-Ruiz, J. M. Granadino-Roldán, M. Fernández-Gómez, G. Domínguez-Espinosa, M. J. Sanchís, Polymer 2009, 50, 317.
- 73H. Wang, Y. Yang, M. Nishiura, Y. Higaki, A. Takahara, Z. Hou, J. Am. Chem. Soc. 2019, 141, 3249.
- 74L. M. Dean, Q. Wu, O. Alshangiti, J. S. Moore, N. R. Sottos, ACS Macro Lett. 2020, 9, 819.