Strain Sensing Behavior of 3D Printable and Wearable Conductive Polymer Composites Filled with Silane-Modified MWCNTs
Zhi Wu
Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorYuan Jin
Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorGuangyong Li
Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorCorresponding Author
Minghua Zhang
Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jianke Du
Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211 China
E-mail: [email protected], [email protected]
Search for more papers by this authorZhi Wu
Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorYuan Jin
Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorGuangyong Li
Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorCorresponding Author
Minghua Zhang
Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jianke Du
Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
3D printing of conductive polymers is an attractive technique for achieving high flexibility, wearability, and sensing characteristics without geometrical limitations. However, there is an urgent need to integrate printability, conductivity, and sensing capability. Herein, a conductive polymer ink for 3D printing that combines the desirable features of high electrical conductivity, flexible stretchability, and strain-sensing monitoring is prepared. The ink matrix is polydimethylsiloxane and synergistically enhanced by acetylene carbon black (ACB) and multi-walled carbon nanotubes (MWCNTs) (silane or un-silane-modified). The inks are screened step-by-step to explore their printability, rheology, mechanical properties, and electrical performance upon loading. The formation of an electrically conductive network, electrical properties upon tensile load, and strain sensing stability under cyclic stretching are investigated intensively. It is demonstrated that conductive polymers filled by ACB and silane-modified, MWCNTs (MWCNTs-MTES) possess superior printability, stretchability, conductivity, and strain sensing behaviors. Finally, a flexible wearable strain-sensing skin patch is printed, and it successfully records joint motion signals on human fingers, wrists, and elbows with good stability and repeatability. Those results show the extent of potential applications in healthcare and motion monitoring fields. This work provides an efficient and simple route to achieve comfortably wearable and high-performance strain sensors.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1a) H. Yuk, B. Lu, S. Lin, K. Qu, J. Xu, J. Luo, X. Zhao, Nat. Commun. 2020, 11, 1604; b) Y. S. Choi, Y.-Y. Hsueh, J. Koo, Q. Yang, R. Avila, B. Hu, Z. Xie, G. Lee, Z. Ning, C. Liu, Y. Xu, Y. J. Lee, W. Zhao, J. Fang, Y. Deng, S. M. Lee, A. Vázquez-Guardado, I. Stepien, Y. Yan, J. W. Song, C. Haney, Y. S. Oh, W. Liu, H.-J. Yoon, A. Banks, M. R. Macewan, G. A. Ameer, W. Z. Ray, Y. Huang, T. Xie, et al., Nat. Commun. 2020, 11, 5990.
- 2a) S. A. Chowdhury, M. C. Saha, S. Patterson, T. Robison, Y. Liu, Adv. Mater. Technol. 2019, 4, 1800398; b) M. Gong, L. Zhang, P. Wan, Prog. Polym. Sci. 2020, 107, 101279; c) D. J. Lipomi, M. Vosgueritchian, B. C.-K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, Z. Bao, Nat. Nanotechnol. 2011, 6, 788.
- 3a) M. Chao, Y. Wang, D. Ma, X. Wu, W. Zhang, L. Zhang, P. Wan, Nano Energy 2020, 78, 105187; b) X. Li, Y. J. Fan, H. Y. Li, J. W. Cao, Y. C. Xiao, Y. Wang, F. Liang, H. L. Wang, Y. Jiang, Z. L. Wang, G. Zhu, ACS Nano 2020, 14, 9605; c) G. Shi, Z. Zhao, J.-H. Pai, I. Lee, L. Zhang, C. Stevenson, K. Ishara, R. Zhang, H. Zhu, J. Ma, Adv. Funct. Mater. 2016, 26, 7614; d) L. M. Zhang, Y. He, S. Cheng, H. Sheng, K. Dai, W. J. Zheng, M. X. Wang, Z. S. Chen, Y. M. Chen, Z. Suo, Small 2019, 15, 1804651.
- 4a) E. Davoodi, H. Montazerian, A. Khademhosseini, E. Toyserkani, Acta Biomater. 2020, 117, 261;
b) M. Z. Miskin, A. J. Cortese, K. Dorsey, E. P. Esposito, M. F. Reynolds, Q. Liu, M. Cao, D. A. Muller, P. L. Mceuen, I. Cohen, Nature 2020, 584, 557;
c) D. Nesic, S. Durual, L. Marger, M. Mekki, I. Sailer, S. S. Scherrer, Bioprinting 2020, 20, e00100;
10.1016/j.bprint.2020.e00100 Google Scholard) J. Gao, X. Ding, X. Yu, X. Chen, X. Zhang, S. Cui, J. Shi, J. Chen, L. Yu, S. Chen, J. Ding, Adv. Healthcare Mater. 2021, 10, 2001404.
- 5P. Jiang, Z. Ji, X. Zhang, Z. Liu, X. Wang, Prog. Addit. Manuf. 2017, 3, 65.
10.1007/s40964-017-0035-x Google Scholar
- 6a) M. A. H. Khondoker, D. Sameoto, Prog. Addit. Manuf. 2019, 4, 197;
10.1007/s40964-019-00088-4 Google Scholarb) Z. Liu, Y. Wang, B. Wu, C. Cui, Y. Guo, C. Yan, Int. J. Adv. Manuf. Technol. 2019, 102, 2877.
- 7Z. Chen, X. Sun, Y. Shang, K. Xiong, Z. Xu, R. Guo, S. Cai, C. Zheng, J. Adv. Ceram. 2021, 10, 195.
- 8X. Wang, G. Mao, J. Ge, M. Drack, G. S. Cañón Bermúdez, D. Wirthl, R. Illing, T. Kosub, L. Bischoff, C. Wang, J. Fassbender, M. Kaltenbrunner, D. Makarov, Commun. Mater. 2020, 1, 67.
- 9a) H. Wei, M. Lei, P. Zhang, J. Leng, Z. Zheng, Y. Yu, Nat. Commun. 2021, 12, 2082; b) J.-Y. Yoo, M.-H. Seo, J.-S. Lee, K.-W. Choi, M.-S. Jo, J.-B. Yoon, Adv. Funct. Mater. 2018, 28, 1804721.
- 10S. Kim, M. Amjadi, T.-I. Lee, Y. Jeong, D. Kwon, M. S. Kim, K. Kim, T.-S. Kim, Y. S. Oh, I. Park, ACS Appl. Mater. Interfaces 2019, 11, 23639.
- 11N. Bachhar, A. Gudadhe, A. Kumar, P. Andrade, G. Kumaraswamy, Bull. Mater. Sci. 2020, 43, 171.
- 12a) J. Saroia, Y. Wang, Q. Wei, M. Lei, X. Li, Y. Guo, K. Zhang, Int. J. Adv. Manuf. Technol. 2019, 106, 1695; b) A. Nag, S. Feng, S. C. Mukhopadhyay, J. Kosel, D. Inglis, Sens. Actuators, A 2018, 280, 525.
- 13a) T. E. Greenwood, S. E. Hatch, M. B. Colton, S. L. Thomson, Addit. Manuf. 2021, 37, 101681; b) K. Tian, Z. Suo, J. J. Vlassak, ACS Appl. Mater. Interfaces 2020, 12, 31002.
- 14a) K. R. Park, J. E. Jeon, H. Han, S. Yoo, K. Shim, S. Mhin, J. Electron. Mater. 2018, 48, 79; b) Y. Hu, T. Zhao, P. Zhu, Y. Zhang, X. Liang, R. Sun, C.-P. Wong, Nano Res. 2018, 11, 1938.
- 15S. Ramanathan, M. Jusoh, T. Sabapathy, M. N. Yasin, S. C. B. Gopinath, H. Arahim, M. N. Osman, Y. A. Wahab, Appl. Phys. A 2020, 126, 756.
- 16a) S. Aslnejad, M. Nasiri, F. Abbasi, H. Abdipour, Macromol. Res. 2020, 28, 733; b) S. He, J. Zhang, X. Xiao, X. Hong, Y. Lai, J. Mater. Sci. 2017, 52, 13103; c) A. K. Pathak, Y. Zhou, L. Lecointre, T. Yokozeki, Appl. Nanosci. 2020, 11, 493.
- 17a) S. Yu, X. Wang, H. Xiang, L. Zhu, M. Tebyetekerwa, M. Zhu, Carbon 2018, 140, 1; b) M. Charara, W. Luo, M. C. Saha, Y. Liu, Adv. Eng. Mater. 2019, 21, 1801068; c) S. Stassi, A. Sacco, G. Canavese, J. Phys. D: Appl. Phys. 2014, 47, 1.
- 18a) D. Guo, X. Pan, Y. Xie, Y. Liu, H. He, Sens. Actuators, A 2021, 318, 112494; b) C. Lozano-Pérez, J. V. Cauich-Rodríguez, F. Avilés, Compos. Sci. Technol. 2016, 128, 25; c) H. Yang, X. Yao, Z. Zheng, L. Gong, L. Yuan, Y. Yuan, Y. Liu, Compos. Sci. Technol. 2018, 167, 371; d) Y. Zheng, Y. Li, Z. Li, Y. Wang, K. Dai, G. Zheng, C. Liu, C. Shen, Compos. Sci. Technol. 2017, 139, 64.
- 19a) H. Yang, L. Yuan, X. Yao, Z. Zheng, D. Fang, Compos. Sci. Technol. 2020, 200, 108474; b) X. Cui, Y. Jiang, Z. Xu, M. Xi, Y. Jiang, P. Song, Y. Zhao, H. Wang, Composites, Part B 2021, 211, 108641.
- 20a) S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin, Q. Liu, T. Yokota, T. Sekitani, T. Isoyama, Y. Abe, Z. Suo, T. Someya, Nat. Nanotechnol. 2016, 11, 472; b) H. Wang, S. Li, Y. Wang, H. Wang, X. Shen, M. Zhang, H. Lu, M. He, Y. Zhang, Adv. Mater. 2020, 32, 1908214; c) X. Liang, H. Li, J. Dou, Q. Wang, W. He, C. Wang, D. Li, J.-M. Lin, Y. Zhang, Adv. Mater. 2020, 32, 2000165.
- 21a) T. Giffney, E. Bejanin, A. S. Kurian, J. Travas-Sejdic, K. Aw, Sens. Actuators, A 2017, 259, 44; b) F. Wang, S. Liu, L. Shu, X.-M. Tao, Carbon 2017, 121, 353; c) H. Yazdani, K. Hatami, E. Khosravi, K. Harper, B. P. Grady, Carbon 2014, 79, 393; d) K. A. Dubey, R. K. Mondal, J. Kumar, J. S. Melo, Y. K. Bhardwaj, Chem. Eng. J. 2020, 389, 124112; e) T. Makowski, D. Kowalczyk, W. Fortuniak, D. Jeziorska, S. Brzezinski, A. Tracz, Cellulose 2014, 21, 4659.
- 22a) D. Sanli, C. Erkey, J. Mater. Sci. 2015, 50, 7159; b) H.-Y. Yu, R. Chen, G.-Y. Chen, L. Liu, X.-G. Yang, J.-M. Yao, J. Nanopart. Res. 2015, 17, 361.
- 23A. Sydney Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, J. A. Lewis, Nat. Mater. 2016, 15, 413.
- 24M. Lin, Z. Zheng, L. Yang, M. Luo, L. Fu, B. Lin, C. Xu, Adv. Mater. 2021, 2107309. https://doi.org/10.1002/adma.202107309.
- 25Y. Gao, G. Yu, T. Shu, Y. Chen, W. Yang, Y. Liu, J. Long, W. Xiong, F. Xuan, Adv. Mater. Technol. 2019, 4, 1900504.
- 26a) T. Yan, Y. Wu, Z. Pan, J. Mater. Sci. 2021, 56, 6292; b) X. Cao, X. Wei, G. Li, C. Hu, K. Dai, J. Guo, G. Zheng, C. Liu, C. Shen, Z. Guo, Polymer 2017, 112, 1; c) S. Zhao, D. Lou, G. Li, Y. Zheng, G. Zheng, K. Dai, C. Liu, Y. Jiang, C. Shen, Compos. Sci. Technol. 2018, 163, 18.
- 27a) D. Jang, S. Z. Farooq, H. N. Yoon, H. R. Khalid, Compos. Sci. Technol. 2021, 207, 108725; b) L. Wang, Y. Chen, L. Lin, H. Wang, X. Huang, H. Xue, J. Gao, Chem. Eng. J. 2019, 362, 89.
- 28a) Y. Lin, X. Dong, S. Liu, S. Chen, Y. Wei, L. Liu, ACS Appl. Mater. Interfaces 2016, 8, 24143; b) S. Zhang, K. Sun, H. Liu, X. Chen, Y. Zheng, X. Shi, D. Zhang, L. Mi, C. Liu, C. Shen, Chem. Eng. J. 2020, 387, 124155; c) B. Zhao, J. Hu, W. Chen, J. Chen, Z. Jing, Polym. Test. 2020, 90, 106633.
- 29a) J. Chen, H. Li, Q. Yu, Y. Hu, X. Cui, Y. Zhu, W. Jiang, Compos. Sci. Technol. 2018, 168, 388; b) J. Gao, L. Wang, Z. Guo, B. Li, H. Wang, J. Luo, X. Huang, H. Xue, Chem. Eng. J. 2020, 381, 122778.
- 30a) X. Cheng, C. Bao, X. Wang, F. Zhang, W. Dong, Appl. Phys. A 2019, 125, 876; b) Y. Lee, J. Myoung, S. Cho, J. Park, J. Kim, H. Lee, Y. Lee, S. Lee, C. Baig, H. Ko, ACS Nano 2021, 15, 1795.