Tunable Photoluminescence Properties of Microcrystalline Cellulose with Gradually Changing Crystallinity and Crystal Form
Jiantang Jiang
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorShijia Lu
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorMan Liu
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorChuchu Li
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorYuanchao Zhang
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorTian Bo Yu
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorLei Yang
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorYifeng Shen
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorCorresponding Author
Qing Zhou
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
E-mail: [email protected]
Search for more papers by this authorJiantang Jiang
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorShijia Lu
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorMan Liu
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorChuchu Li
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorYuanchao Zhang
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorTian Bo Yu
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorLei Yang
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorYifeng Shen
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorCorresponding Author
Qing Zhou
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Nonconventional luminogens with persistent room temperature phosphoresce (p-RTP) are attracting increasing attention owing to their momentous significance and diverse technical applications in optoelectronic and biomedical. So far, the p-RTP emission of some amorphous powders or single crystals has been studied in depth. The p-RTP emission of amorphous and fully crystalline states and their emission properties are widely divergent, while the difference of their p-RTP emission mechanism is still controversial. The relevance between crystallinity change and p-RTP properties is rarely studied. Furthermore, there is almost no research on the photoluminescence (PL) property change and emission mechanism under the crystal form transformation of semi-crystalline polymer. Herein, microcrystalline cellulose (MCC) is chosen as a model compound to explore its crystallinity and the change in luminescence during the crystal form transformation to make up for this gap. By precisely adjusting the crystallinity and crystal cellulose conversion of MCC, the changing trend of quantum efficiency, and p-RTP lifetime is consistent with the change of crystallinity, and the cellulose I may be more beneficial to PL emission than cellulose II. Clustering-triggered emission mechanism can reasonably explain these interesting photophysical processes, which also can be supported by single-crystal analysis and theoretical calculations.
Conflict Of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
marc202100321-sup-0001-VideoS1.mp4160.8 KB | Supporting Information |
marc202100321-sup-0002-VideoS2.mp48.8 MB | Supporting Information |
marc202100321-sup-0003-SuppMat.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Wang, X. Bin, X. Chen, S. Zheng, Y. Zhang, W. Z. Yuan, Macromol. Rapid Commun. 2018, 39, 1800528.
- 2N. Jiang, D. Zhu, Z. Su, M. R. Bryce, Mater. Chem. Front. 2021, 5, 60.
- 3X. Chen, W. Luo, H. Ma, Q. Peng, W. Z. Yuan, Y. Zhang, Sci. China: Chem. 2018, 61, 351.
- 4X. Dou, Q. Zhou, X. Chen, Y. Tan, X. He, P. Lu, K. Sui, B. Z. Tang, Y. Zhang, W. Z. Yuan, Biomacromolecules 2018, 19, 2014.
- 5S. Wang, D. Wu, S. Yang, Z. Lin, Q. Ling, Mater. Chem. Front. 2020, 4, 1198.
- 6S. Cai, H. Ma, H. Shi, H. Wang, X. Wang, L. Xiao, W. Ye, K. Huang, X. Cao, N. Gan, C. Ma, M. Gu, L. Song, H. Xu, Y. Tao, C. Zhang, W. Yao, Z. An, W. Huang, Nat. Commun. 2019, 10, 4247.
- 7Q. Zhou, T. Yang, Z. Zhong, F. Kausar, Z. Wang, Y. Zhang, W. Z. Yuan, Chem. Sci. 2020, 11, 2926.
- 8M. Fang, J. Yang, X. Xiang, Y. Xie, Y. Dong, Q. Peng, Q. Li, Z. Li, Mater. Chem. Front. 2018, 2, 2124.
- 9Y. Wang, S. Tang, Y. Wen, S. Zhang, B. Yang, W. Z. Yuan, Mater. Horiz. 2020, 7, 2105.
- 10S. Zheng, T. Zhu, Y. Wang, T. Yang, W. Z. Yuan, Angew. Chem., Int. Ed. 2020, 59, 10018.
- 11Q. Wang, X. Dou, X. Chen, Z. Zhao, S. Wang, Y. Wang, K. Sui, Y. Tan, Y. Gong, Y. Zhang, W. Z. Yuan, Angew. Chem., Int. Ed. 2019, 58, 12667.
- 12Y. Lai, T. Zhu, T. Geng, S. Zheng, T. Yang, Z. Zhao, G. Xiao, B. Zou, W. Z. Yuan, Small 2020, 16, 2005035.
- 13S. Tao, S. Lu, Y. Geng, S. Zhu, S. A. T. Redfern, Y. Song, T. Feng, W. Xu, B. Yang, Angew. Chem., Int. Ed. 2018, 130, 2417.
10.1002/ange.201712662 Google Scholar
- 14Z. Yang, Z. Mao, X. Zhang, D. Ou, Y. Mu, Y. Zhang, C. Zhao, S. Liu, Z. Chi, J. Xu, Y.-C. Wu, P.-Y. Lu, A. Lien, M. R. Bryce, Angew. Chem., Int. Ed. 2016, 55, 2181.
- 15G. Bergamini, A. Fermi, C. Botta, U. Giovanella, S. Di Motta, F. Negri, R. Peresutti, M. Gingras, P. Ceroni, J. Mater. Chem. C 2013, 1, 2717.
- 16E. Zhao, J. W. Y. Lam, L. Meng, Y. Hong, H. Deng, G. Bai, X. Huang, J. Hao, B. Z. Tang, Macromolecules 2015, 48, 64.
- 17M. Sun, C.-Y. Hong, C.-Y. Pan, J. Am. Chem. Soc. 2012, 134, 20581.
- 18L. Xu, X. Liang, S. Zhong, Y. Gao, X. Cui, ACS Sustainable Chem. Eng. 2020, 8, 18816.
- 19R. B. Restani, P. I. Morgado, M. P. Ribeiro, I. J. Correia, A. Aguiar-Ricardo, V. D. B. Bonifácio, Angew. Chem., Int. Ed. 2012, 51, 5162.
- 20L. Pastor-Pérez, Y. Chen, Z. Shen, A. Lahoz, S.-E. Stiriba, Macromol. Rapid Commun. 2007, 28, 1404.
- 21D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C. F. Kaminski, A. Hassanali, G. S. K. Schierle, J. Am. Chem. Soc. 2016, 138, 3046.
- 22Y. Feng, T. Bai, H. Yan, F. Ding, L. Bai, W. Feng, Macromolecules 2019, 52, 3075.
- 23X. Chen, T. Yang, J. Lei, X. Liu, Z. Zhao, Z. Xue, W. Li, Y. Zhang, W. Z. Yuan, J. Phys. Chem. 2020, 124, 8928.
- 24Q. Zhou, Z. Wang, X. Dou, Y. Wang, S. Liu, Y. Zhang, W. Z. Yuan, Mater. Chem. Front. 2019, 3, 257.
- 25M. Baroncini, G. Bergamini, P. Ceroni, Chem. Commun. 2017, 53, 2081.
- 26S. Hirata, Adv. Opt. Mater. 2017, 5, 1700116.
- 27R. Kabe, C. Adachi, Nature 2017, 550, 384.
- 28S. Hirata, K. Totani, J. Zhang, T. Yamashita, H. Kaji, S. R. Marder, T. Watanabe, C. Adachi, Adv. Funct. Mater. 2013, 23, 3386.
- 29D. Li, F. Lu, J. Wang, W. Hu, X.-M. Cao, X. Ma, H. Tian, J. Am. Chem. Soc. 2018, 140, 1916.
- 30D. Lee, O. Bolton, B. C. Kim, J. H. Youk, S. Takayama, J. Kim, J. Am. Chem. Soc. 2013, 135, 6325.
- 31Y. Katsurada, S. Hirata, K. Totani, T. Watanabe, M. Vacha, Adv. Opt. Mater. 2015, 3, 1726.
- 32H. Chen, X. Yao, X. Ma, H. Tian, Adv. Opt. Mater. 2016, 4, 1397.
- 33C. Zhou, T. Xie, R. Zhou, C. O. Trindle, Y. Tikman, X. Zhang, G. Zhang, ACS Appl. Mater. Inter 2015, 7, 17209.
- 34Y. Su, S. Z. F. Phua, Y. Li, X. Zhou, D. Jana, G. Liu, W. Q. Lim, W. K. Ong, C. Yang, Y. Zhao, Sci. Adv. 2018, 4, 9732.
- 35M. S. Kwon, Y. Yu, C. Coburn, A. W. Phillips, K. Chung, A. Shanker, J. Jung, G. Kim, K. Pipe, S. R. Forrest, J. H. Youk, J. Gierschner, J. Kim, Nat. Commun. 2015, 6, 8947.
- 36Y. Gong, H. Chen, X. Ma, H. Tian, ChemPhysChem 2016, 7, 1934.
- 37D. Li, F. Lu, J. Wang, W. Hu, X.-M. Cao, X. Ma, H. Tian, J. Am. Chem. Soc. 2018, 140, 1916.
- 38L. Huang, L. Liu, X. Li, H. Hu, M. Chen, Q. Yang, Z. Ma, X. Jia, Angew. Chem., Int. Ed. 2019, 131, 16597.
10.1002/ange.201908567 Google Scholar
- 39L. Zhan, Z. Chen, S. Gong, Y. Xiang, F. Ni, X. Zeng, G. Xie, C. Yang, Angew. Chem., Int. Ed. 2019, 131, 17815.
- 40X.-F. Wang, W.-J. Guo, H. Xiao, Q.-Z. Yang, B. Chen, Y.-Z. Chen, C.-H. Tung, L.-Z. Wu, Adv. Funct. Mater. 2020, 30, 1907282.
- 41Z. Zhang, L. Tang, X. Fan, Y. Wang, K. Zhang, Q. Sun, H. Zhang, S. Xue, W. Yang, J. Mater. Chem. C 2018, 6, 8984.
- 42L. Gu, H. Shi, L. Bian, M. Gu, K. Ling, X. Wang, H. Ma, S. Cai, W. Ning, L. Fu, H. Wang, S. Wang, Y. Gao, W. Yao, F. Huo, Y. Tao, Z. An, X. Liu, W. Huang, Nat. Photonics 2019, 13, 406.
- 43S. M. A. Fateminia, Z. Mao, S. Xu, Z. Yang, Z. Chi, B. Liu, Angew. Chem., Int. Ed. 2017, 56, 12160.
- 44W. Z. Yuan, X. Y. Shen, H. Zhao, J. W. Y. Lam, L. Tang, P. Lu, C. Wang, Y. Liu, Z. Wang, Q. Zheng, J. Z. Sun, Y. Ma, B. Z. Tang, J. Phys. Chem. C 2010, 114, 6090.
- 45G. Chen, J. Zhou, H. Feng, F. Feng, P. Xu, S. Pan, J. Xu, Z. Qian, J. Mater. Chem. C 2019, 7, 43.
- 46N. Shen, J. Li, Z. Wu, B. Hu, C. Cheng, Z. Wang, X. Huang, Chem.- Eur. J. 2017, 23, 15795.
- 47A. Nitti, C. Botta, A. Forni, E. Cariati, E. Lucenti, D. Pasini, CrystEngComm 2020, 22, 7782.
- 48L.-L. Du, B.-L. Jiang, X.-H. Chen, Y.-Z. Wang, L.-M. Zou, Y.-L. Liu, Y.-Y. Gong, C. Wei, W.-Z. Yuan, Chin. J. Polym. Sci. 2019, 37, 409.
- 49W. Liu, M. E. Fei, Y. Ban, A. Jia, R. Qiu, Polymers 2017, 9, 541.
- 50H. Yang, L. Wang, L. Jia, C. Qiu, Q. Pang, X. Pan, Ind. Eng. Chem. Res. 2014, 53, 6562.
- 51A. Pereira, H. Duarte, P. Nosrati, M. Gubitosi, L. Gentile, A. Romano, U. Olsson, Cellulose 2018, 25, 3205.
- 52M. Åkerholm, B. Hinterstoisser, L. Salmén, Carbohyd. Res. 2004, 339, 569.
- 53W. R. Kunusa, I. Isa, L. A. Laliyo, H. Iyabu, J. Phys.: Conf. Ser. 2018, 1028, 012199.
10.1088/1742-6596/1028/1/012199 Google Scholar
- 54Y. Nishiyama, P. Langan, H. Chanzy, J. Am. Chem. Soc. 2002, 124, 9074.
- 55P. Langan, Y. Nishiyama, H. Chanzy, Biomacromolecules 2001, 2, 410.
- 56CCDC 810597 (cellulose I) and 1966045 (cellulose II) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via, www.ccdc.cam.ac.uk/structures