Novel Polymer-Based Organic/c-Si Monolithic Tandem Solar Cell: Enhanced Efficiency using Interlayer and Transparent Top Electrode Engineering
HyunJung Park
Institute for Energy Research, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorSo Hyun Park
Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea
Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorSang-Won Lee
Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorYoonmook Kang
Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorDonghwan Kim
Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorCorresponding Author
Hae Jung Son
Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea
Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hae-Seok Lee
Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorHyunJung Park
Institute for Energy Research, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorSo Hyun Park
Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea
Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorSang-Won Lee
Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorYoonmook Kang
Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorDonghwan Kim
Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorCorresponding Author
Hae Jung Son
Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea
Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hae-Seok Lee
Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Tandem solar cells which are electrically connected with various photoactive materials have the potential to solve the current challenges by exceeding the theoretically limited efficiency of single junction solar cells. Here the first monolithic organic/silicon tandem cell is reported based on a semitransparent polymer on a crystalline silicon (c-Si) substrate. Herein, experimental results are presented for four-terminal (4-T) and monolithic two-terminal (2-T) organic/c-Si tandem cells using organic cells with an inverted n-i-p structure and c-Si cells with an n-type TOPCon structure with detailed analysis. The best 4-T tandem cell efficiency is 15.22%, and 2-T results show that the top (organic) and bottom (c-Si) cells are electrically connected by an open-circuit voltage over 1.4 V. Further, a simulated efficiency of over 20% using the organic/c-Si tandem is achieved, implying the tandem efficiency can be enhanced through further improvement of electric and optical characteristics with the optimization.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
marc202100305-sup-0001-SuppMat.pdf385.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510.
- 2A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Science 2016, 352, aad4424.
- 3M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion, 1, Springer Series in Photonics, 12, Springer, Berlin, Heidelberg, Germany 2003.
- 4A. De Vos, J. Phys. D: Appl. Phys. 1980, 13, 839.
- 5P. Philipps, Photovoltaics Report, Fraunhofer Institute for Solar Energy & Systems, ISE with support of PSE Projects GmbH, https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html (accessed: March 2021).
- 6Y. Ko, H. Park, C. Lee, Y. Kang, Y. Jun, Y. Jun, Adv. Mater. 2020, 32, 2002196.
- 7K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy 2017, 2, 17032.
- 8M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, A. W. Y. Ho-Baillie, Prog. Photovolt: Res. Appl. 2020, 28, 3.
- 9A. Richter, M. Hermle, S. W. Glunz, IEEE J. Photovoltaics 2013, 3, 1184.
- 10L. Mazzarella, Y.-H. Lin, S. Kirner, A. B. Morales-Vilches, L. Korte, S. Albrecht, E. Crossland, B. Stannowski, C. Case, H. J. Snaith, R. Schlatmann, Adv. Energy Mater. 2019, 9, 1803241.
- 11B. Chen, Z. Yu, K. Liu, X. Zheng, Y. Liu, J. Shi, D. Spronk, P. N. Rudd, Z. Holman, J. Huang, Joule 2019, 3, 177.
- 12J. Xu, C. C. Boyd, Z. J. Yu, A. F. Palmstrom, D. J. Witter, B. W. Larson, R. M. France, J. Werner, S. P. Harvey, E. J. Wolf, W. Weigand, S. Manzoor, M. F. A. M. Van Hest, J. J. Berry, J. M. Luther, Z. C. Holman, M. D. Mcgehee, Science 2020, 367, 1097.
- 13D. Kim, H. J. Jung, I. J. Park, B. W. Larson, S. P. Dunfield, C. Xiao, J. Kim, J. Tong, P. Boonmongkolras, S. G. Ji, F. Zhang, S. R. Pae, M. Kim, S. B. Kang, V. Dravid, J. J. Berry, J. Y. Kim, K. Zhu, D. H. Kim, B. Shin, Science 2020, 368, 155.
- 14F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, C. Ballif, Nat. Mater. 2018, 17, 820.
- 15A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Márquez, A. B. Morales Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jošt, G. Matič, B. Rech, R. Schlatmann, M. Topič, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, Science 2020, 370, 1300.
- 16J. Hou, O. Inganäs, R. H. Friend, F. Gao, Nat. Mater. 2018, 17, 119.
- 17Y. Li, G. Xu, C. Cui, Y. Li, Adv. Energy Mater. 2018, 8, 1701791.
- 18P. M. Beaujuge, J. M. J. Fréchet, J. Am. Chem. Soc. 2011, 133, 20009.
- 19Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chem. Rev. 2009, 109, 5868.
- 20Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 32, 1908205.
- 21M. Zhang, L. Zhu, T. Hao, G. Zhou, C. Qiu, Z. Zhao, N. Hartmann, B. Xiao, Y. Zou, W. Feng, H. Zhu, M. Zhang, Y. Zhang, Y. Li, T. P. Russell, F. Liu, Adv. Mater. 2021, 2007177, 2007177.
- 22L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, Y. Chen, Science 2018, 361, 1094.
- 23Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, J. Hou, J. Am. Chem. Soc. 2017, 139, 7302.
- 24J. Kim, Z. Hong, G. Li, T.-B. Song, J. Chey, Y. S. Lee, J. You, C.-C. Chen, D. K. Sadana, Y. Yang, Nat. Commun. 2015, 6, 6391.
- 25PVlighthouse, https://www.pvlighthouse.com.au/sunsolve (accessed: March 2020).
- 26H. Park, H. Park, S. J. Park, S. Bae, H. Kim, J. W. Yang, J.i Y. Hyun, C. H. Lee, S. H. Shin, Y. Kang, H.-S. Lee, D. Kim, Sol. Energy Mater. Sol. Cells 2018, 189, 21.
- 27H. Park, S. Bae, S.e J. Park, J.i Y. Hyun, C. H. Lee, D. Choi, D. Kang, H. Han, Y. Kang, H.-S. Lee, D. Kim, RSC Adv. 2019, 9, 23261.
- 28A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S. W. Glunz, Sol. Energy Mater. Sol. Cells 2017, 173, 96.
- 29T. N. Truong, D. Yan, C. Samundsett, R. Basnet, M. Tebyetekerwa, L. Li, F. Kremer, A. Cuevas, D. Macdonald, H. T. Nguyen, ACS Appl. Mater. Interfaces 2019, 11, 5554.
- 30J. Melskens, B. W. H. Van De Loo, B. Macco, L. E. Black, S. Smit, W. M. M. Kessels, IEEE J. Photovoltaics 2018, 8, 373.
- 31H. Kim, S. Bae, K.-S. Ji, S. M. Kim, J. W. Yang, C. H. Lee, K. D. Lee, S. Kim, Y. Kang, H.-S. Lee, D. Kim, Appl. Surf. Sci. 2017, 409, 140.
- 32H. Park, Y. Lee, S. J. Park, S. Bae, S. Kim, D. Oh, J. Park, Y. Kim, H. Guim, Y. Kang, H.-S. Lee, D. Kim, J. Yi, Prog. Photovolt. 2019, 27, 1104.