A Highly Controlled Organic–Inorganic Encapsulation Nanocomposite with Versatile Features toward Wearable Device Applications
Ruijie Tang
State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorXiaoxue Yao
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077 China
Search for more papers by this authorJingyi Chen
Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106 USA
Search for more papers by this authorSreepathy Sridar
Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
Search for more papers by this authorXianglei He
State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYuan Pu
State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorJie-Xin Wang
State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Dan Wang
State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Steven Wang
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077 China
E-mail: [email protected], [email protected]
Search for more papers by this authorRuijie Tang
State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorXiaoxue Yao
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077 China
Search for more papers by this authorJingyi Chen
Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106 USA
Search for more papers by this authorSreepathy Sridar
Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
Search for more papers by this authorXianglei He
State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYuan Pu
State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorJie-Xin Wang
State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Dan Wang
State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Steven Wang
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Ultraviolet-curable polyurethane acrylate (PUA) materials can be used in a number of important applications spanning from microfluidics, surface patterning to wearable technology. For the first time, the potential of encapsulation of modified zirconia (ZrO2) nanoparticles is reported in PUA-based hybrid films aimed to facilitate profoundly enhanced hardness and refractive index. By successfully manipulating the interfacial reaction conditions between ZrO2 nanoparticles and PUA film, the PUA-based nanocomposites exhibit an ultrahigh hardness of 9 and superior refractive index of 1.64 (589.3 nm). The outcomes obtained pave the way for seamless application of nanozirconia/PUA as a potent encapsulating material that provides structurally morphable, water resistant, and optically transparent light emitting diodes toward wearables devices in healthcare.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
marc202100134-sup-0001-SuppMat.pdf478.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Wang, Z. Liu, T. Zhang, Small 2017, 13, 1602790.
- 2G.-H. Lee, H. Moon, H. Kim, G. H. Lee, W. Kwon, S. Yoo, D. Myung, S. H. Yun, Z. Bao, S. K. Hahn, Nat. Rev. Mater. 2020, 5, 149.
- 3H. Xu, J. Liu, J. Zhang, G. Zhou, N. Luo, N. Zhao, Adv. Mater. 2017, 29, 1700975.
- 4Y. Khan, D. Han, A. Pierre, J. Ting, X. Wang, C. M. Lochner, G. Bovo, N. Yaacobi-Gross, C. Newsome, R. Wilson, A. C. Arias, Proc. Nat. Acad. Sci. USA 2018, 115, E11015.
- 5H. Lee, E. Kim, Y. Lee, H. Kim, J. Lee, M. Kim, H.-J. Yoo, S. Yoo, Sci. Adv. 2018, 4, 9530.
- 6Y. Kaneko, J. S. Floras, K. Usui, J. Plante, R. Tkacova, T. Kubo, S.-I. Ando, T. D. Bradley, N. Engl. J. Med. 2003, 348, 1233.
- 7T. Pereira, N. Tran, K. Gadhoumi, M. M. Pelter, D. H. Do, R. J. Lee, R. Colorado, K. Meisel, X. Hu, npj Digit. Med. 2020, 3, eCollection.
- 8M. V. Perez, K. W. Mahaffey, H. Hedlin, J. S. Rumsfeld, A. Garcia, T. Ferris, V. Balasubramanian, A. M. Russo, A. Rajmane, L. Cheung, G. Hung, J. Lee, P. Kowey, N. Talati, D. Nag, S. E. Gummidipundi, A. Beatty, M. T. Hills, S. Desai, C. B. Granger, M. Desai, M. P. Turakhia, N. Engl. J. Med. 2019, 381, 1909.
- 9M. Cejnar, H. Kobler, S. N. Hunyor, J. Biomed. Eng. 1993, 15, 151.
- 10N. Strobel, N. Droseros, W. Kontges, M. Seiberlich, M. Pietsch, S. Schlisske, F. Lindheimer, R. R. Schroder, U. Lemmer, M. Pfannmoller, N. Banerji, G. Hernandez-Sosa, Adv. Mater. 2020, 32, 1908258.
- 11X. Yang, J. Liu, Y. Wu, J. Liu, F. Cheng, Prog. Org. Coat. 2019, 129, 96.
- 12D. Lee, S. H. Song, J. Hwang, S. H. Jin, K. H. Park, B. H. Kim, S. H. Hong, S. Jeon, Small 2013, 9, 2602.
- 13R. Wen, J. Huo, J. Lv, Z. Liu, Y. Yu, J. Mater. Sci.: Mater. Electron. 2017, 28, 14522.
- 14J. H. Park, S.-D. Baek, J. I. Cho, J. Y. Yoo, S.-Y. Yoon, S. Kim, S. Lee, Y. S. Kim, J.-M. Myoung, Composites, Part B 2019, 175, 107188.
- 15B. Wang, A. Facchetti, Adv. Mater. 2019, 31, 1901408.
- 16K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, P. S. Lee, Nat. Commun. 2019, 10, 2158.
- 17Y. Xiong, M. Zhu, Z. Wang, J. Schneider, H. Huang, S. V. Kershaw, C. Zhi, A. L. Rogach, Small 2018, 14, 1800315.
- 18C. Zhu, E. Chalmers, L. Chen, Y. Wang, B. B. Xu, Y. Li, X. Liu, Small 2019, 15, 1902440.
- 19D. Kong, R. Pfattner, A. Chortos, C. Lu, A. C. Hinckley, C. Wang, W.-Y. Lee, J. W. Chung, Z. Bao, Adv. Funct. Mater. 2016, 26, 4680.
- 20J. C. Fu, L. Wang, H. J. Yu, M. Haroon, F. Haq, W. L. Shi, B. Wu, L. B. Wang, Prog. Org. Coat. 2019, 131, 82.
- 21L. J. Chen, X. H. Guo, Y. F. Luo, Z. X. Jia, Y. J. Chen, D. M. Jia, Polymers 2018, 10, 12.
- 22H. Awada, A. Al Samad, D. Laurencin, R. Gilbert, X. Dumail, A. El Jundi, A. Bethry, R. Pomrenke, C. Johnson, L. Lemaire, F. Franconi, G. Felix, J. Larionova, Y. Guari, B. Nottelet, ACS Appl. Mater. Interfaces 2019, 11, 9519.
- 23Y. Fu, J. D. Cui, Q. Huang, L. C. Lu, C. Y. Pan, G. P. Yu, Prog. Org. Coat. 2018, 117, 166.
- 24K. Enomoto, M. Kikuchi, A. Narumi, S. Kawaguchi, ACS Appl. Mater. Interfaces 2018, 10, 13985.
- 25X. He, R. Tang, F. Yang, M. S. Kadhim, J.-X. Wang, Y. Pu, D. Wang, Front. Inf. Technol. Electron. Eng. 2019, 20, 1698.
- 26G. Garnweitner, L. M. Goldenberg, O. V. Sakhno, M. Antonietti, M. Niederberger, J. Stumpe, Small 2007, 3, 1626.
- 27C. Gautam, J. Joyner, A. Gautam, J. Rao, R. Vajtai, Dalton Trans. 2016, 45, 19194.
- 28A. Poklad, M. Motylenko, V. Klemm, G. Schreiber, S. Martin, S. Decker, B. Abendroth, M. Haverkamp, D. Rafaja, Adv. Eng. Mater. 2013, 15, 627.
- 29S. Khan, G. Kaur, K. Singh, Ceram. Int. 2017, 43, 722.
- 30M. Takahashi, Y. Uchida, S. Yamasaki, J. Hasegawa, T. Yagi, J. Lightwave Technol. 2014, 32, 3081.
- 31X. Q. Ma, C. Peng, D. Y. Zhou, Z. J. Wu, S. D. Li, J. J. Wang, N. N. Sun, J. Sol-Gel Sci. Technol. 2018, 88, 442.
- 32X. L. Yang, N. Zhao, Q. Z. Zhou, C. Cai, X. L. Zhang, J. Xu, J. Mater. Chem. C 2013, 1, 3359.
- 33H. Xianglei, Z. Wang, D. Wang, F. Yang, R. Tang, J.-X. Wang, Y. Pu, J. Chen, Appl. Surf. Sci. 2019, 491, 505.
- 34K. J. Chen, H. V. Han, H. C. Chen, C. C. Lin, S. H. Chien, C. C. Huang, T. M. Chen, M. H. Shih, H. C. Kuo, Nanoscale 2014, 6, 5378.
- 35R. Longshi, T. Yong, L. ZongTao, D. Xinrui, L. Jiasheng, Y. Shudong, Y. Caiman, L. Hangaung, Opt. Express 2017, 25, A432.
- 36H. Ishikawa, A. Onodera, K. Asakawa, S. Nakadomari, K. Shimizu, Jpn. J. Ophthalmol. 2012, 56, 181.
- 37A. Sacca, I. Gatto, A. Carbone, R. Pedicini, S. Maisano, A. Stassi, E. Passalacqua, Int. J. Hydrogen Energy 2019, 44, 31445.
- 38D. Toorchi, H. Khosravi, E. Tohidlou, J. Ind. Text. 2019, 0, 1.
- 39C. B. Hu, Y. S. Zheng, Y. Q. Qing, F. L. Wang, C. Y. Mo, Q. Mo, J. Wuhan Univ. Technol., Mater. Sci. Ed. 2016, 31, 937.
- 40P. T. Chung, S. H. Chiou, C. Y. Tseng, S. T. Chiang, ACS Appl. Mater. Interfaces 2016, 8, 9986.
- 41L. Wang, B. C. Benicewicz, ACS Macro Lett. 2013, 2, 173.
- 42W. Ni, S. Wu, Q. Ren, Ind. Eng. Chem. Res. 2012, 51, 13157.
- 43S. M. Khaled, R. Sui, P. A. Charpentier, A. S. Rizkalla, Langmuir 2007, 23, 3988.
- 44X. Dong, X. Zhuo, J. Wei, G. Zhang, Y. Li, ACS Appl. Mater. Interfaces 2017, 9, 9070.
- 45Y. Sorek, M. Zevin, R. Reisfeld, T. Hurvits, S. Ruschin, Chem. Mater. 1997, 9, 670.
- 46X. L. He, R. J. Tang, Y. Pu, J. X. Wang, Z. Wang, D. Wang, J. F. Chen, Nano Energy 2019, 62, 1.
- 47K. Enomoto, M. Kikuchi, A. Narumi, S. Kawaguchi, Kobunshi Ronbunshu 2015, 72, 82.
- 48A. Ss, B. Nk, C. Kkm, B. Jrbm, A. Sh, Optik 2021, 10, 166496.
- 49D. K. Rhee, P. J. Yoo, J. Mater. Chem. C 2019, 7, 8176.
- 50H. I. Elim, B. Cai, K. Yu, O. Sugihara, N. Kambe, J. Phys. Chem. B 2009, 113, 10143.
- 51W. M. Steen, Opt. Laser Technol. 1999, 31, 328.
10.1016/S0030-3992(99)00110-3 Google Scholar
- 52K. J. Clays, G. R. Moehlmann, E. Hendrickx, S. Houbrechts, M. Triest, T. Verbiest, A. P. Persoons, C. Samyn, Int. Soc. Opt. Photonics 1993, 2025, 182.
- 53D. E. Aspnes, Am. J. Phys. 1982, 50, 704.
- 54T. Yovcheva, I. Vlaeva, I. Bodurov, V. Dragostinova, S. Sainov, Appl. Opt. 2012, 51, 7771.
- 55N. G. Jerlov, Tellus 2010, 7, 218.
- 56H. Zhang, L. Tang, Z. Zhang, L. Gu, C. Eger, Tribol. Int. 2009, 43, 83.
- 57D. Zhao, I. Lee, J. Y. Park, S. H. Cho, C. S. Choi, S. Y. Song, J. K. Kim, J. L. Lee, ECS J. Solid State Sci. Technol. 2016, 5, R6.
- 58W. A. Ismail, Z. A. Ali, R. Puteh, Adv. Mater. Sci. Eng. 2012, 1, 6.