Complete latticeability in vector-valued sequence spaces
Corresponding Author
Geraldo Botelho
Faculdade de Matemática, Universidade Federal de Uberlândia, Minas Gerais, Brazil
Correspondence
Geraldo Botelho, Universidade Federal de Uberlândia, Faculdade de Matemática. Campus Santa Mônica – Bloco 1F, Santa Mônica, 38400902 – Uberlândia, MG, Brazil.
Email: [email protected]
Search for more papers by this authorJosé Lucas P. Luiz
Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Geraldo Botelho
Faculdade de Matemática, Universidade Federal de Uberlândia, Minas Gerais, Brazil
Correspondence
Geraldo Botelho, Universidade Federal de Uberlândia, Faculdade de Matemática. Campus Santa Mônica – Bloco 1F, Santa Mônica, 38400902 – Uberlândia, MG, Brazil.
Email: [email protected]
Search for more papers by this authorJosé Lucas P. Luiz
Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, São Paulo, Brazil
Search for more papers by this authorAbstract
Using a technique due to Jiménez–Rodríguez, first we prove the complete latticeability of the set of disjoint non-norm null weakly null sequences and of the set of disjoint non-norm null regular-polynomially null sequences in Banach lattices. Then we apply the mother vector technique to prove the complete latticeability of , which implies the complete latticeability of , where E is a Banach lattice and .
REFERENCES
- 1F. Albiac and C. Leránoz, Uniqueness of unconditional basis in Lorentz sequence spaces, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1643–1647.
- 2C. Aliprantis and O. Burkinshaw, Positive operators, Academic Press, New York and London, 1985.
- 3C. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces with applications to economics, 2nd ed., American Mathematical Society, Providence, RI, 2003.
10.1090/surv/105 Google Scholar
- 4H. Ardakani, S. M. Moshtaghioun, S. M. S. Modarres Mosadegh, and M. Salimi,,The strong Gelfand-Phillips property in Banach lattices, Banach J. Math. Anal. 10 (2016), no. 1, 15–26.
- 5R. Aron, Y. Choi, and J. Llavona, Estimates by polynomials, Bull. Aust. Math. Soc. 52 (1995), 475–486.
- 6R. Aron, L. Bernal-González, D. Pellegrino, and J. B. Seoane-Sepúlveda, Lineability: The search for linearity in mathematics, CRC Press, Boca Raton, FL, 2016.
- 7F. Arranz, J. M. F. Castillo, and R. García, Three-space problems for polynomial properties in Banach spaces, Math. Proc. R. Ir. Acad. 103A (2003), 93–100.
10.1353/mpr.2003.0013 Google Scholar
- 8H. Baklouti and M. Hajji, Domination problem on Banach lattices and almost weak compactness, Positivity 19 (2015), no. 4, 797–805.
- 9G. Botelho, R. Causey, and K. V. Navoyan, Sequence spaces on Banach lattices, Contemp. Math. 737 (2019).
10.1090/conm/737/14855 Google Scholar
- 10G. Botelho and J. L. P. Luiz, The positive polynomial Schur property in Banach lattices, Proc. Amer. Math. Soc. 149 (2021), 2147–2160.
- 11G. Botelho, Q. Bu, D. Ji, and K. Navoyan, The positive Schur property on spaces of regular multilinear operators, Monatsh. Math. 197 (2022), 565–578.
- 12G. Botelho, D. Diniz, V. V. Fávaro, and D. Pellegrino, Spaceability in Banach and quasi-Banach sequence spaces, Linear Algebra Appl. 434 (2011), no. 5, 1255–1260.
- 13Q. Bu and G. Buskes, The Radon-Nikodym property for tensor products of Banach lattices, Positivity 10 (2006), 365–390.
- 14Q. Bu and G. Buskes, Schauder decompositions and the Fremlin projective tensor product of Banach lattices, J. Math. Anal. Appl. 355 (2009), 335–351.
- 15Q. Bu and G. Buskes, Polynomials on Banach lattices and positive tensor products, J. Math. Anal. Appl. 388 (2012), 845–862.
- 16Q. Bu, G. Buskes, and A. G. Kusraev, Bilinear maps on products of vector lattices: a survey, Positivity, in: Boulabiar, K., Buskes, G., Triki, A. (eds), Trends in Mathematics, Birkhäuser, Basel, 2007, 97–126.
- 17Q. Bu and J. Diestel, Observations about the projective tensor product of Banach spaces, I. , Quaest. Math. 24 (2001), 519–533.
10.1080/16073606.2001.9639238 Google Scholar
- 18Q. Bu and N. Wong, Some geometric properties inherited by the positive tensor products of atomic Banach lattices, Indag. Math. (N.S.) 23 (2012), 199–213.
- 19D. Carando, M. Mazzitelli, and P. Sevilla-Peris, A note on the symmetry of sequence spaces, Math. Notes 110 (2021), 26–40.
- 20T. K. Carne, B. Cole, and T. W. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639–659.
- 21J. M. F. Castillo, R. García, and R. Gonzalo, Banach spaces in which all multilinear forms are weakly sequentially continuous, Studia Math. 136 (1999), no. 2, 121–145.
- 22J. X. Chen and L. Li, On a question of Bouras concerning weak compactness of almost Dunford-Pettis sets, Bull. Aust. Math. Soc. 92 (2015), 111–114.
- 23J. Cruickshank, J. Loane, and R. A. Ryan, Positive polynomials on Riesz spaces, Positivity 21 (2017), no. 3, 885–895.
- 24J. Diestel, H. Jarchow, and A. Tonge, Absolutely summing operators, Cambridge University Press, Cambridge, 1995.
10.1017/CBO9780511526138 Google Scholar
- 25S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer Monogr. Math., Springer, London, 1999.
10.1007/978-1-4471-0869-6 Google Scholar
- 26J. Farmer and W. B. Johnson, Polynomial Schur and polynomial Dunford-Pettis properties, Contemp. Math. 144 (1993), 95–105.
10.1090/conm/144/1209450 Google Scholar
- 27E. M. Galego, M. González, and J. Pello, On subprojectivity and superprojectivity of Banach spaces, Results Math. 71 (2017), no. 3-4, 1191–1205.
- 28Y. Gordon and D. R. Lewis, Absolutely summing operators and local unconditional structures, Acta Math. 133 (1974), 27–48.
- 29J. A. Jaramillo and A. Prieto, Weak-polynomial convergence on a Banach space, Proc. Amer. Math. Soc. 118 (1993), 463–468.
- 30P. Jiménez-Rodríguez, On sequences not enjoying Schur's property, Open Math. 15 (2017), 233–237.
- 31W. B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, 1–84, North-Holland, Amsterdam, 2001.
- 32P. K. Kamthan and M. Gupta, Sequence spaces and series, Lecture Notes in Pure and Applied Mathematics, 65, Marcel Dekker, New York, 1981.
- 33J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I: Sequence spaces and II: Function spaces, Springer, Berlin, 1996.
- 34J. Loane, Polynomials on Riesz spaces, J. Math. Anal. Appl. 364 (2010), no. 1, 71–78.
- 35R. R. Megginson, An introduction to Banach space theory, Graduate Texts in Mathematics, Springer, Berlin, 1998.
10.1007/978-1-4612-0603-3 Google Scholar
- 36P. Meyer-Nieberg, Banach lattices, Springer, Berlin, 1991.
10.1007/978-3-642-76724-1 Google Scholar
- 37T. Oikhberg, A note on latticeability and algebrability, J. Math. Anal. Appl. 434 (2016), 523–537.
- 38T. Oikhberg, Large sublattices in subsets of Banach lattices, Arch. Math. 109 (2017), no. 3, 245–253.
- 39F. Räbiger, Lower and upper 2-estimates for order bounded sequences and Dunford-Pettis operators between certain classes of Banach lattices, Lecture Notes in Mathematics 1470 (1991), 159–170.
- 40P. Tradacete, Positive Schur properties in spaces of regular operators, Positivity 19 (2015), 305–315.
- 41W. Wnuk, A note on the positive Schur property, Glasg. Math. J. 31 (1989), 169–172.
- 42W. Wnuk, Banach lattices with properties of the Schur type: a survey, Conf. Sem. Mat. Univ. Bari 249 (1993), 1–25.
- 43W. Wnuk, On the dual positive Schur property in Banach lattices, Positivity 17 (2013), 759–773.
- 44E. D. Zeekoei and J. H. Fourie, On p-convergent operators on Banach lattices, Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 5, 873–890.
10.1007/s10114-017-7172-5 Google Scholar