The role of the form body in bounds for inclusion measures
Corresponding Author
Baocheng Zhu
Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei, 445000 P. R. China
Correspondence Baocheng Zhu, Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei 445000 P. R. China. Email: [email protected]Search for more papers by this authorShuang Mou
Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei, 445000 P. R. China
Search for more papers by this authorNiufa Fang
School of Mathematics and Statistics, Southwest University, Chongqing, 400715 P. R. China
Search for more papers by this authorCorresponding Author
Baocheng Zhu
Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei, 445000 P. R. China
Correspondence Baocheng Zhu, Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei 445000 P. R. China. Email: [email protected]Search for more papers by this authorShuang Mou
Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei, 445000 P. R. China
Search for more papers by this authorNiufa Fang
School of Mathematics and Statistics, Southwest University, Chongqing, 400715 P. R. China
Search for more papers by this authorAbstract
In this paper, the inclusion measures of convex bodies are studied. Some new isoperimetric-type inequalities are established by using the technique of inner parallel bodies and mixed volumes. These inequalities give the upper and lower bounds for the inclusion measures, and show the role of the form body of a convex body in these bounds.
References
- 1A. D. Alexandrov, On the theory of mixed volumes of convex bodies, Mat. Sb. 45 (1938), 28–46.
- 2W. Blaschke, Vorlesungen über Integralgeometrie, 3rd edn. Deutscher Verlag der Wissenschaften, Berlin, 1955.
- 3J. Bokowski, Eine verschärfte Ungleichung zwischen Volumen, Oberfläche und Inkugelradius im
, Elem. Math. 28 (1973), 43–44.
- 4G. Bol, Beweis einer Vermutung von H. Minkowski, Abh. Math. Sem. Univ. Hamburg 15 (1943), 37–56.
10.1007/BF02941073 Google Scholar
- 5T. Bonnesen, Über eine Verschärfung der isoperimetrischen Ungleichheit des Kreises in der Ebene und auf der Kugeloberfläche nebst einer Anwendung auf eine Minkowskische Ungleichheit für konvexe Körper, Math. Ann. 84 (1921), 216–227.
10.1007/BF01459405 Google Scholar
- 6T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Springer, Berlin (1974, 1934). English translation: Boron, L., Christenson, C., Smith, B. (eds.) Theory of Convex Bodies. BCS Associates, Moscow, ID, 1987.
- 7N. S. Brannen, The Wills conjecture, Trans. Amer. Math. Soc. 349 (1997), 3977–3987.
- 8A. Dinghas, Bemerkung zu einer Verschärfung der isoperimetrischen Ungleichung durch H. Hadwiger, Math. Nachr. 1 (1948), 284–286.
10.1002/mana.19480010503 Google Scholar
- 9A. Dinghas, Über eine neue isoperimetrische Ungleichung für konvexe Polyeder, Math. Ann. 120 (1949), 533–538.
- 10V. I. Diskant, A generalization of Bonnesen inequalities, Soviet Math. Dokl. 14 (1973), 1728–1731.
- 11R. J. Gardner, Geometric Tomography, Cambridge Univ. Press, Cambridge, 1995.
- 12P. M. Gruber, Convex and Discrete Geometry, Springer, Berlin Heidelberg, 2007.
- 13H. Hadwiger, Altes und Neues über konvexe Körper, Birkhäuser, Basel/Stuttgart, 1955.
10.1007/978-3-0348-6953-9 Google Scholar
- 14H. Hadwiger, Vorlesungen über Inhalt Oberfläche und Isoperimetrie, Springer, Berlin/ Gottingen/Heidelberg, 1957.
10.1007/978-3-642-94702-5 Google Scholar
- 15M. A. Hernández Cifre and E. Saorín, On the volume of inner parallel bodies, Adv. Geom. 10 (2010), 275–286.
- 16M. A. Hernández Cifre and E. Saorín, On inner parallel bodies and quermassintegrals, Israel J. Math. 177 (2010), 29–48.
- 17M. A. Hernández Cifre and E. Saorín, On differentiability of quermassintegrals, Forum Math. 22 (2010), 115–126.
- 18M. A. Hernández Cifre and E. Saorín, Differentiability of quermassintegrals: A classification of convex bodies, Trans. Amer. Math. Soc. 366 (2014), 591–609.
- 19R. Osserman, Bonnesen-style isoperimetric inequality, Amer. Math. Monthly 86 (1979), 1–29.
- 20D. Ren, Generalized support function and its applications, in: Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Science Press, Beijing, pp. 1367–1378 1982.
- 21D. Ren, Topics in Integral Geometry, World Scientific, Singapore, 1988.
- 22J. R. Sangwine-Yager, Inner Parallel Bodies and Geometric Inequalities, Ph.D. thesis dissertation, University of California Davis, 1978.
- 23J. R. Sangwine-Yager, Bonnesen-style inequalities for Minkowski relative geometry, Trans. Amer. Math. Soc. 307 (1988), 373–382.
- 24L. A. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley, Reading, 1976.
- 25E. Saorín, The role of the kernel in Bonnesen-style inradius inequalities, Monatsh. Math. 171 (2013), 65–75.
- 26R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, Second edition, Cambridge Univ. Press, 2014.
- 27J. M. Wills, Zum Verhältnis von Volumen zur Oberfläche bei konvexen Körpern, Arch. Math. 21 (1970), 557–560.
10.1007/BF01220963 Google Scholar
- 28G. Xiong, W. Cheung, and D. Li, Bounds for inclusion measures of convex bodies, Adv. Appl. Math. 41 (2008), 584–598.
- 29G. Zhang, Integral geometric inequalities, Acta Math. Sinica 34 (1991), 72–90.
- 30G. Zhang, Geometric inequalities and inclusion measures of convex bodies, Mathematika 41 (1994), 95–116.
- 31J. Zhou, On Bonnesen-type inequalities, Acta. Math. Sinica, Chinese Series 50 (2007), 1397–1402.
- 32B. Zhu and W. Xu, On the i-th quermassintegral of inner parallel bodies (in Chinese), Sci. Sin. Math. 46 (2016), 807–816.