Fractional integration operators of variable order: continuity and compactness properties
Mikhail Lifshits
Department of Mathematics and Mechanics, St. Petersburg State University, 198504 St. Petersburg, Russia
MAI, Linköping University, 58183 Linköping, Sweden
e-mail: [email protected]
Search for more papers by this authorCorresponding Author
Werner Linde
Friedrich-Schiller-Universität Jena, Institut für Stochastik, Ernst-Abbe-Platz 2, 07743 Jena, Germany
Corresponding author: e-mail: [email protected]Search for more papers by this authorMikhail Lifshits
Department of Mathematics and Mechanics, St. Petersburg State University, 198504 St. Petersburg, Russia
MAI, Linköping University, 58183 Linköping, Sweden
e-mail: [email protected]
Search for more papers by this authorCorresponding Author
Werner Linde
Friedrich-Schiller-Universität Jena, Institut für Stochastik, Ernst-Abbe-Platz 2, 07743 Jena, Germany
Corresponding author: e-mail: [email protected]Search for more papers by this authorAbstract
Let be a Lebesgue-almost everywhere positive function. We consider the Riemann-Liouville operator of variable order defined by









In the second, central part of this paper we investigate compactness properties of . We characterize functions
for which
is a compact operator and for certain classes of functions
we provide order-optimal bounds for the dyadic entropy numbers
.
References
- 1J. A. Adell and E. A. Gallardo-Gutiérrez, The norm of the Riemann-Liouville operator on
: a probabilistic approach, Bull. Lond. Math. Soc. 39, 565–574 (2007).
- 2K. F. Andersen and E. T. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integration operators, Trans. Am. Math. Soc. 308, 547–558 (1988).
- 3A. Ayache, S. Cohen, and J. Lévy Véhel, The covariance structure of multifractional Brownian motion, in: Proceedings of 6th IEEE International Conference on Acoustics, Speech, and Signal Processing, 3810–3813 (2000).
- 4E. S. Belinsky and W. Linde, Small ball probabilities of fractional Brownian sheets via fractional integration operators, J. Theor. Probab. 15, 589–612 (2002).
- 5E.S. Belinsky and W. Linde, Compactness properties of certain integral operators related to fractional integration, Math. Z. 252, 669–686 (2006).
- 6A. Benassi, S. Jaffard, and D. Roux, Gaussian processes and pseudodifferential elliptic operators, Rev. Mat. Iberoam. 13, 19–81 (1997).
- 7B. Carl, A. Hinrichs, and P. Rudolph, Entropy numbers of convex hulls in Banach spaces and applications, Preprint arXiv:1211.1559 (2012).
- 8B. Carl and I. Stephani, Entropy, Compactness and Approximation of Operators (Cambridge Univ. Press, Cambridge, 1990).
10.1017/CBO9780511897467 Google Scholar
- 9K. Debicki and P. Kisowski, Asymptoticsc of supremum distribution of
-locally stationary Gaussian processes, Stochastic Processes Appl. 118, 2022–2037 (2008).
- 10L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes Math. 2017 (Springer, 2011).
- 11D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers and Differential Operators (Cambridge Univ. Press, Cambridge, 1996).
10.1017/CBO9780511662201 Google Scholar
- 12K. J. Falconer and J. Lévy Véhel, Multifractional, multistable and other processes with prescribed local form, J. Theor. Probab. 22, 375–401 (2009).
- 13G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities (Cambridge Univ. Press, Cambridge, 1967).
- 14E. Hashorva, M. Lifshits, and O. Seleznjev, Approximation of a random process with variable smoothness, Preprint arXiv:1206.1251 (2012).
- 15L. Hedberg, On certain convolution inequalities, Proc. Am. Math. Soc. 36, 505–510 (1972).
- 16Z. Huang and B. He, Volume of unit ball in a n-dimensional normed space and its asymptotic properties, J. Shanghai Univ. 12, 107–109 (2008).
10.1007/s11741-008-0204-1 Google Scholar
- 17B. Jawerth, C. Perez, and G. Welland, The positive cone in Triebel-Lizorkin spaces and the relation among potential and maximal operators, Contemp. Math. 107, 71–91 (1990).
10.1090/conm/107/1066471 Google Scholar
- 18M. A. Krasnoselskii et al., Integral Operators in Spaces of Summable Functions (Noordhoff Intern. Publishing, Leyden, 1976).
10.1007/978-94-010-1542-4 Google Scholar
- 19Th. Kühn and W. Linde, Optimal series representation of fractional Brownian sheet, Bernoulli 8, 669–696 (2002).
- 20M. Lifshits and W. Linde, Fractional integration operators of variable order: continuity and compactness properties, Preprint arXiv: 1211.3826 (2012).
- 21W. Li and W. Linde, Approximation, metric entropy and small ball estimates for Gaussian measures, Ann. Probab. 27, 1556–1578 (1999).
- 22W. Linde, Non-determinism of linear operators and lower entropy estimates, J. Fourier Anal. Appl. 14, 568–587 (2008).
- 23E. N. Lomakina and V. D. Stepanov, Asymptotic estimates for the approximation and entropy numbers of a one-weight Riemann-Liouville operator, Mat. Tr. 9, 52–100 (2006); English translation: Sib. Adv. Math. 17, 1–36 (2007).
- 24S. G. Samko, Differentiation and integration of variable order and the spaces
in: Proceedings of Conference on Operator Theory for Complex and Hypercomplex Analysis (Mexico City, 1994), Contemp. Math. Vol. 212 (Amer. Math. Soc., Providence, RI, 1998), pp. 203–219.
- 25S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives (Gordon and Breach, Amsterdam, 1993).
- 26S. G. Samko and B. Ross, Integration and differentiation to a variable fractional order, Integral Transforms and Special Functions 1, 277–300 (1993).
10.1080/10652469308819027 Google Scholar
- 27N. Samko, S. Samko, and B. Vakulov, Fractional integrals and hypersingular integrals in variable order spaces on homogeneous spaces, J. Funct. Spaces Appl. 8, 215–244 (2010).
- 28N. Samko and B. Vakulov, Spherical fractional and hypersingular integrals of variable order in generalized Hölder spaces with variable characteristic, Math. Nachr. 284, 355–369 (2011).
- 29E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton Univ. Press, Princeton, N.J., 1971).
- 30D. Surgailis, Non-homogeneous fractional integration and multifractional processes, Stoch. Proc. Appl. 116, 200–221 (2006).