Volume 287, Issue 8-9 pp. 885-902
Original Paper

Metrics of Kaluza–Klein type on the anti-de Sitter space urn:x-wiley:dummy:mana201200105:equation:mana201200105-math-0001

Giovanni Calvaruso

Corresponding Author

Giovanni Calvaruso

Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce, Italy

Corresponding author: e-mail: [email protected]Search for more papers by this author
Domenico Perrone

Domenico Perrone

Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce, Italy

e-mail: [email protected]

Search for more papers by this author
First published: 30 April 2014
Citations: 12

Abstract

We introduce and study a new family of pseudo-Riemannian metrics urn:x-wiley:dummy:mana201200105:equation:mana201200105-math-0003 on the anti-de Sitter three-space urn:x-wiley:dummy:mana201200105:equation:mana201200105-math-0004. These metrics will be called “of Kaluza-Klein type” , as they are induced in a natural way by the corresponding metrics defined on the tangent sphere bundle urn:x-wiley:dummy:mana201200105:equation:mana201200105-math-0005. For any choice of three real parameters urn:x-wiley:dummy:mana201200105:equation:mana201200105-math-0006, the pseudo-Riemannian manifold urn:x-wiley:dummy:mana201200105:equation:mana201200105-math-0007 is homogeneous. Moreover, we shall introduce and study some natural almost contact and paracontact structures urn:x-wiley:dummy:mana201200105:equation:mana201200105-math-0008, compatible with urn:x-wiley:dummy:mana201200105:equation:mana201200105-math-0009, such that urn:x-wiley:dummy:mana201200105:equation:mana201200105-math-0010 is a homogeneous almost contact (respectively, paracontact) metric structure. These structures will be then used to show the existence of a three-parameter family of homogeneous metric mixed 3-structures on the anti-de Sitter three-space.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.