Metrics of Kaluza–Klein type on the anti-de Sitter space 
Corresponding Author
Giovanni Calvaruso
Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce, Italy
Corresponding author: e-mail: [email protected]Search for more papers by this authorDomenico Perrone
Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce, Italy
e-mail: [email protected]
Search for more papers by this authorCorresponding Author
Giovanni Calvaruso
Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce, Italy
Corresponding author: e-mail: [email protected]Search for more papers by this authorDomenico Perrone
Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce, Italy
e-mail: [email protected]
Search for more papers by this authorAbstract
We introduce and study a new family of pseudo-Riemannian metrics on the anti-de Sitter three-space
. These metrics will be called “of Kaluza-Klein type” , as they are induced in a natural way by the corresponding metrics defined on the tangent sphere bundle
. For any choice of three real parameters
, the pseudo-Riemannian manifold
is homogeneous. Moreover, we shall introduce and study some natural almost contact and paracontact structures
, compatible with
, such that
is a homogeneous almost contact (respectively, paracontact) metric structure. These structures will be then used to show the existence of a three-parameter family of homogeneous metric mixed 3-structures on the anti-de Sitter three-space.
References
- 1M. T. K. Abbassi and G. Calvaruso, g-natural contact metrics on unit tangent sphere bundles, Monatsh. Math. 151, 89–109 (2006).
- 2M. T. K. Abbassi and G. Calvaruso, The curvature tensor of g-natural metrics on unit tangent sphere bundles, Int. J. Contemp. Math. Sci. 3, 245–258 (2008).
- 3M. T. K. Abbassi, G. Calvaruso, and D. Perrone, Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics, Quart. J. Math. 62, 259–288 (2011).
- 4M. T. K. Abbassi and O. Kowalski, Naturality of homogeneous metrics on Stiefel manifolds
, Diff. Geom. Appl. 28, 131–139 (2010).
- 5M. T. K. Abbassi and M. Sarih, On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Diff. Geom. Appl. 22, 19–47 (2005).
- 6M. Benyounes, E. Loubeau, and S. Nishikawa, Generalized Cheeger–Gromoll metrics and the Hopf map, Diff. Geom. Appl. 39, 187–213 (2011).
- 7M. Benyounes, E. Loubeau, and C. M. Wood, Harmonic sections of Riemannian vector bundles, and metrics of Cheeger–Gromoll type, Diff. Geom. Appl. 25, 322–334 (2007).
- 8G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys. 57, 1279–1291 (2007). Addendum: J. Geom. Phys. 58, 291–292 (2008).
- 9G. Calvaruso, Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata 127, 99–119 (2007).
- 10G. Calvaruso, Three-dimensional Ivanov–Petrova manifolds, J. Math. Phys. 50, 063509, 1–12 (2009).
- 11G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math. 55, 697–718 (2011).
- 12G. Calvaruso and R. A. Marinosci, Homogeneous geodesics of non-unimodular Lorentzian Lie groups and naturally reductive Lorentzian spaces in dimension three, Adv. Geom. 8, 473–489 (2008).
- 13G. Calvaruso and D. Perrone, Homogeneous and H-contact unit tangent sphere bundles, Austral. J. Math. 88, 323–337 (2010).
- 14G. Calvaruso and D. Perrone, Contact pseudo-metric manifolds, Diff. Geom. Appl. 28, 615–634 (2010).
- 15G. Calvaruso and D. Perrone; Geometry of Kaluza–Klein metrics on the sphere
, Annali Mat. Pura Appl. 192, 879–900 (2013).
- 16J. Cheeger and D. Gromoll, On the structure of complete manifolds of non-negative curvature, Annals of Math. 96, 413–443 (1972).
- 17K. Y. Ha and J. B. Lee, Left invariant metrics and curvatures on simply connected three-dimensional Lie groups, Math. Nachr. 282, 868–898 (2009).
- 18S. Ianus, R. Mazzocco, and G. E. Vilcu, Real lightlike hypersurfaces of paraquaternionic Kähler manifolds, Mediterr. J. Math. 3, 581–592 (2006).
- 19J.-I. Inoguchi, Timelike surface of constant mean curvature in Minkowski 3-space, Tokyo J. Math. 21, 141–152 (1998).
10.3836/tjm/1270041992 Google Scholar
- 20S. Ianus, L. Ornea, and G. E. Vilcu, Submanifolds in manifolds with metric mixed 3-structures, Mediterr. J. Math. 9, 105–128 (2012).
- 21S. Kaneyuki and M. Konzai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8, 301–318 (1985).
10.3836/tjm/1270151571 Google Scholar
- 22T. Kashiwada, On a contact 3-structure, Math. Z. 238, 829–832 (2001).
- 23O. Kowalski and M. Sekizawa, Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles–a classification, Bull. Tokyo Gakugei Univ. 40, 1–29 (1988).
- 24J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math. 21, 293–329 (1976).
- 25B. O'Neill, Semi-Riemannian Geometry (New York: Academic Press, 1983).
- 26D. Perrone, Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 42, 243–256 (1998).
- 27D. Perrone, Minimality, harmonicity and CR geometry for Reeb vector fields, Int. J. Math. 21, 1189–1218 (2010).
- 28S. Rahmani, Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois, J. Geom. Phys. 9, 295–302 (1992).
10.1016/0393-0440(92)90033-W Google Scholar
- 29S. E. Stepanov and V. N. Shelepova, A remark on Ricci solitons (Russian), Mat. Zametki 86, 474–477 (2009). Translation in Math. Notes 86, 447–450 (2009).
- 30F. Tricerri and L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, London Math. Soc. Lect. Notes 83 (Cambridge Univ. Press, 1983).
- 31C. M. Wood, An existence theorem for harmonic sections, Manuscripta Math. 68, 69–75 (1990).
- 32S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom. 36, 37–60 (2009).