High-Performance Colloidal Quantum-Dot VCSEL with Quality Factor Above 2000
Yangzhi Tan
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, and Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077 China
Search for more papers by this authorZhulu Song
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, and Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorGuanding Mei
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, and Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorYunjun Wang
Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Dan Wu
College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiao Wei Sun
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, and Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hoi Wai Choi
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kai Wang
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, and Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorYangzhi Tan
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, and Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077 China
Search for more papers by this authorZhulu Song
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, and Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorGuanding Mei
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, and Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorYunjun Wang
Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Dan Wu
College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiao Wei Sun
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, and Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hoi Wai Choi
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kai Wang
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, and Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Colloidal quantum-dot (CQD) vertical-cavity surface-emitting lasers (VCSELs) enable a solution-processable directional-emitting coherent light source, which is desirable for various applications, including near-eye display, sensing, and communication. However, it remains challenging to construct a controllable, high-quality VCSEL cavity without damaging the photoluminescence of CQDs to achieve the desired lasing characteristics. Here, high-quality CQDs with an engineered CdZnSe/ZnSe/ZnxCd1-xS core/interlayer/graded shell structure are developed to ensure excellent stability and sub-single-exciton gain threshold, facilitating the achievement of high-performance VCSEL. Subsequently, CQD VCSELs with distributed Bragg reflectors deposited on CQDs in situ by thermal evaporation are demonstrated. The proposed fabrication process not only enables precise control over the cavity structure but also a high cavity quality without compromising the optical properties of CQDs. Consequently, the developed CQD VCSEL exhibits a low lasing threshold of 58 µJ cm−2 and a high lasing quality factor up to 2395, setting a record for VCSELs based on CQDs or colloidal quantum-wells. It also demonstrates stable operation for 300 h at room temperature, corresponding to 1.08 × 108 stable lasing pulses, placing it among the most stable nanocrystal lasers reported. This work presents an effective strategy for achieving high-performance CQD-based VCSEL, which is significant for the future development towards non-epitaxial laser diodes.
Conflict of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
lpor202401316-sup-0001-SuppMat.pdf5.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. P. Garcia de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, E. H. Sargent, Science 2021, 373.
- 2H. Jung, N. Ahn, V. I. Klimov, Nat. Photonics 2021, 15, 643.
- 3C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, P. Lagoudakis, Nat. Commun. 2013, 4, 2376.
- 4Y. Zhu, W. Xie, S. Bisschop, T. Aubert, E. Brainis, P. Geiregat, Z. Hens, D. Van Thourhout, ACS Photonics 2017, 4, 2446.
- 5J. Guan, L. K. Sagar, R. Li, D. Wang, G. Bappi, N. E. Watkins, M. R. Bourgeois, L. Levina, F. Fan, S. Hoogland, O. Voznyy, J. Martins de Pina, R. D. Schaller, G. C. Schatz, E. H. Sargent, T. W. Odom, Nano Lett. 2020, 20, 1468.
- 6C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, A. Nurmikko, Nat. Nanotechnol. 2012, 7, 335.
- 7Y. Mei, G.-E. Weng, B.-P. Zhang, J.-P. Liu, W. Hofmann, L.-Y. Ying, J.-Y. Zhang, Z.-C. Li, H. Yang, H.-C. Kuo, Light: Sci. Appl. 2017, 6, e16199.
- 8Y.-Z. Huang, Microcavity Semiconductor Lasers: Principles, Design and Applications, John Wiley & Sons, Hoboken, NJ, USA 2021.
10.1002/9783527820191 Google Scholar
- 9K. Iga, Jpn. J. Appl. Phys. 2008, 47, 1.
- 10H. Wei, Q. Wei, F. Fang, G. Xiang, B. Tong, C. Wang, B. Sun, X. Zhao, M. Li, X. W. Sun, Y. Gao, Laser Photonics Rev. 2022, 17, 2200557.
- 11J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, I. Moreels, Nat. Nanotechnol. 2014, 9, 891.
- 12Y.-J. Lee, T.-W. Yeh, C. Zou, Z.-P. Yang, J.-W. Chen, P.-L. Hsu, J.-L. Shen, C.-C. Chang, J.-K. Sheu, L. Y. Lin, ACS Photonics 2019, 6, 2894.
- 13B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, H. V. Demir, Adv. Mater. 2015, 27, 2741.
- 14B. Gao, J. P. George, J. Beeckman, K. Neyts, Opt. Express 2020, 28, 12837.
- 15S. Valligatla, A. Chiasera, S. Varas, N. Bazzanella, D. N. Rao, G. C. Righini, M. Ferrari, Opt. Express 2012, 20, 21214.
- 16G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C.-W. Lin, L. Chang, Appl. Phys. Lett. 2006, 88, 061904.
- 17T. Sakai, M. Kushimoto, Z. Zhang, N. Sugiyama, L. J. Schowalter, Y. Honda, C. Sasaoka, H. Amano, Appl. Phys. Lett. 2020, 116, 122101.
- 18F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, E. H. Sargent, Nature 2017, 544, 75.
- 19B. Guzelturk, Y. Kelestemur, M. Olutas, S. Delikanli, H. V. Demir, ACS Nano 2014, 8, 6599.
- 20N. Taghipour, S. Delikanli, S. Shendre, M. Sak, M. Li, F. Isik, I. Tanriover, B. Guzelturk, T. C. Sum, H. V. Demir, Nat. Commun. 2020, 11, 3305.
- 21H. Kim, K.-S. Cho, H. Jeong, J. Kim, C.-W. Lee, W.-k. Koh, Y.-G. Roh, S. W. Hwang, Y. Park, ACS Photonics 2016, 3, 1536.
- 22V. M. Menon, M. Luberto, N. V. Valappil, S. Chatterjee, Opt. Express 2008, 16, 19535.
- 23L. Zhang, H. Yang, B. Yu, Y. Tang, C. Zhang, X. Wang, M. Xiao, Y. Cui, J. Zhang, Adv. Opt. Mater. 2019, 8, 1901615.
- 24H. Yang, S. Li, L. Zhang, W. Xiang, Y. Zhang, X. Wang, M. Xiao, Y. Cui, J. Zhang, Nanoscale 2022, 14, 5369.
- 25Y. Altintas, K. Gungor, Y. Gao, M. Sak, U. Quliyeva, G. Bappi, E. Mutlugun, E. H. Sargent, H. V. Demir, ACS Nano 2019, 13, 10662.
- 26L. Zhang, H. Yang, Y. Tang, W. Xiang, C. Wang, T. Xu, X. Wang, M. Xiao, J. Zhang, Chem. Eng. J. 2022, 428, 131159.
- 27T. Lee, B. J. Kim, H. Lee, D. Hahm, W. K. Bae, J. Lim, J. Kwak, Adv. Mater. 2022, 34, 2106276.
- 28M. Abdellah, K. Žídek, K. Zheng, P. Chábera, M. E. Messing, T. Pullerits, J. Phys. Chem. Lett. 2013, 4, 1760.
- 29G. E. Cragg, A. L. Efros, Nano Lett. 2010, 10, 313.
- 30K. Wu, Y. S. Park, J. Lim, V. I. Klimov, Nat. Nanotechnol. 2017, 12, 1140.
- 31N. Ahn, C. Livache, V. Pinchetti, H. Jung, H. Jin, D. Hahm, Y. S. Park, V. I. Klimov, Nature 2023, 617, 79.
- 32J. Lim, Y. S. Park, V. I. Klimov, Nat. Mater. 2018, 17, 42.
- 33W. K. Bae, L. A. Padilha, Y.-S. Park, H. McDaniel, I. Robel, J. M. Pietryga, V. I. Klimov, ACS Nano 2013, 7, 3411.
- 34Y. Wang, C. Pu, H. Lei, H. Qin, X. Peng, J. Am. Chem. Soc. 2019, 141, 17617.
- 35N. Ahn, Y. S. Park, C. Livache, J. Du, K. Gungor, J. Kim, V. I. Klimov, Adv. Mater. 2023, 35, 2206613.
- 36V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, A. Piryatinski, Nature 2007, 447, 441.
- 37Y.-S. Park, J. Roh, B. T. Diroll, R. D. Schaller, V. I. Klimov, Nat. Rev. Mater. 2021, 6, 382.
- 38T. Kitabayashi, T. Asashita, N. Satoh, T. Kiba, M. Kawamura, Y. Abe, K. H. Kim, Thin Solid Films 2020, 699, 137912.
- 39B. D. Padullaparthi, J. Tatum, K. Iga, VCSEL Industry: Communication and Sensing, John Wiley & Sons, Hoboken, NJ, USA 2021.
10.1002/9781119782223 Google Scholar
- 40Y. Tan, Y. Huang, D. Wu, Y. Wang, X. W. Sun, H. W. Choi, K. Wang, Light: Sci. Appl. 2025, 14, 36.
- 41Y. Tan, W. Y. Fu, H. Lin, D. Wu, X. W. Sun, H. W. Choi, K. Wang, Natl. Sci. Rev. 2025, 12.
- 42N. Pourdavoud, T. Haeger, A. Mayer, P. J. Cegielski, A. L. Giesecke, R. Heiderhoff, S. Olthof, S. Zaefferer, I. Shutsko, A. Henkel, D. Becker-Koch, M. Stein, M. Cehovski, O. Charfi, H. H. Johannes, D. Rogalla, M. C. Lemme, M. Koch, Y. Vaynzof, K. Meerholz, W. Kowalsky, H. C. Scheer, P. Gorrn, T. Riedl, Adv. Mater. 2019, 31, 1903717.
- 43H. Tang, Y. Wang, Y. Chen, K. Wang, X. He, C. Huang, S. Xiao, S. Yu, Q. Song, Nano Lett. 2023, 23, 3418.
- 44S. Rhee, D. Jung, D. Kim, D. C. Lee, C. Lee, J. Roh, Small 2021, 17, 2101204.
- 45H. Chang, Y. Zhong, H. Dong, Z. Wang, W. Xie, A. Pan, L. Zhang, Light: Sci. Appl. 2021, 10, 60.
- 46I. Tanghe, M. Samoli, I. Wagner, S. A. Cayan, A. H. Khan, K. Chen, J. Hodgkiss, I. Moreels, D. V. Thourhout, Z. Hens, P. Geiregat, Nat. Nanotechnol. 2023, 18, 1423.
- 47M. Sak, N. Taghipour, S. Delikanli, S. Shendre, I. Tanriover, S. Foroutan, Y. Gao, J. Yu, Z. Yanyan, S. Yoo, C. Dang, H. V. Demir, Adv. Funct. Mater. 2019, 30, 1907417.
- 48F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, R. Signorini, Adv. Funct. Mater. 2011, 22, 337.
- 49W. Chen, L. Wang, R. Liu, H. Shen, J. Du, F. Fan, Nano Lett. 2023, 23, 437.
- 50R. Duan, Z. Zhang, L. Xiao, X. Zhao, Y. T. Thung, L. Ding, Z. Liu, J. Yang, V. D. Ta, H. Sun, Adv. Mater. 2022, 34, 2108884.
- 51Y. T. Thung, R. Duan, E. G. Durmusoglu, Y. He, L. Xiao, C. X. X. Lee, W. S. Lew, L. Zhang, H. V. Demir, H. Sun, Laser Photonics Rev. 2023, 17, 2200849.
- 52M. Mohammadimasoudi, P. Geiregat, F. Van Acker, J. Beeckman, Z. Hens, T. Aubert, K. Neyts, Light Sci Appl 2022, 11, 275.
- 53G. L. Whitworth, M. Dalmases, N. Taghipour, G. Konstantatos, Nat. Photonics 2021, 15, 738.
- 54N. Taghipour, G. L. Whitworth, A. Othonos, M. Dalmases, S. Pradhan, Y. Wang, G. Kumar, G. Konstantatos, Adv. Mater. 2021, 34, 2107532.
- 55N. Taghipour, M. Dalmases, G. L. Whitworth, M. Dosil, A. Othonos, S. Christodoulou, S. M. Liga, G. Konstantatos, Adv. Mater. 2023, 35, 2207678.