Multi-Energy X-Ray Linear-Array Detector Enabled by the Side-Illuminated Metal Halide Scintillator
Peng Ran
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorQingrui Yao
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorJuan Hui
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorYirong Su
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorLurong Yang
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorCuifang Kuang
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorXu Liu
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorCorresponding Author
Yang (Michael) Yang
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
E-mail: [email protected]
Search for more papers by this authorPeng Ran
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorQingrui Yao
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorJuan Hui
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorYirong Su
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorLurong Yang
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorCuifang Kuang
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorXu Liu
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
Search for more papers by this authorCorresponding Author
Yang (Michael) Yang
State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310063 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Conventional scintillator-based X-ray imaging typically captures the full spectral of X-ray photons without distinguishing their energy. However, the absence of X-ray spectral information often results in insufficient image contrast, particularly for substances possessing similar atomic numbers and densities. In this study, an innovative multi-energy X-ray linear-array detector is presented that leverages side-illuminated X-ray scintillation using the emerging metal halide Cs3Cu2I5. The negligible self-absorption characteristic not only improves the scintillation output but is also beneficial for improving the energy resolution for the side-illuminated scintillation scenarios. By exploiting Beer's law, which governs the absorption of X-ray photons with different energies, the incident X-ray spectral can be reconstructed by analyzing the distribution of scintillation intensity when the scintillator is illuminated from the side. The relative error between the reconstructed and measured X-ray spectral is < 5.63%. This method offers an additional energy-resolving capability for X-ray linear-array detectors commonly used in computed tomography (CT) imaging setups, surpassing the capabilities of conventional energy-integration approaches, all without requiring extra hardware components. A proof-of-concept multi-energy CT imaging system featuring eight energy channels is successfully implemented. This study presents a simple and efficient strategy for achieving multi-energy X-ray detection and CT imaging based on emerging metal halides.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
lpor202300587-sup-0001-SuppMat.pdf911.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) C. Roques-Carmes, N. Rivera, A. Ghorashi, S. E. Kooi, Y. Yang, Z. Lin, J. Beroz, A. Massuda, J. Sloan, N. Romeo, Y. Yu, J. D. Joannopoulos, I. Kaminer, S. G. Johnson, M. Soljacic, Science 2022, 375, 837; b) J. Liu, X. Zhao, Y. Xu, H. Wu, X. Xu, P. Lu, X. Zhang, X. Zhao, M. Xia, J. Tang, G. Niu, Laser Photonics Rev. 2023, 17, 2300006; c) Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, X. Liu, Nature 2018, 561, 88; d) B. Wang, J. Peng, X. Yang, W. Cai, H. Xiao, S. Zhao, Q. Lin, Z. Zang, Laser Photonics Rev. 2022, 16, 2100736; e) Z. Wang, Y. Wei, C. Liu, Y. Liu, M. Hong, Laser Photonics Rev. 2023, 17, 2200851.
- 2a) X. Ou, X. Qin, B. Huang, J. Zan, Q. Wu, Z. Hong, L. Xie, H. Bian, Z. Yi, X. Chen, Y. Wu, X. Song, J. Li, Q. Chen, H. Yang, X. Liu, Nature 2021, 590, 410; b) J. Perego, I. Villa, A. Pedrini, E. C. Padovani, R. Crapanzano, A. Vedda, C. Dujardin, C. X. Bezuidenhout, S. Bracco, P. E. Sozzani, A. Comotti, L. Gironi, M. Beretta, M. Salomoni, N. Kratochwil, S. Gundacker, E. Auffray, F. Meinardi, A. Monguzzi, Nat. Photonics 2021, 15, 393.
- 3a) Z. Shi, H. Yang, W. Cong, G. Wang, Phys. Med. Biol. 2016, 61, 4183; b) J. Pang, S. Zhao, X. Du, H. Wu, G. Niu, J. Tang, Light Sci. Appl. 2022, 11, 105.
- 4a) P. C. H. McCollough, P. S. Leng, P. L. Yu, M. J. G. Fletcher, Radiology 2015, 276, 637; b) M. J. Willemink, M. Persson, A. Pourmorteza, N. J. Pelc, D. Fleischmann, Radiology 2018, 289, 293; c) X. Wang, D. Meier, S. Mikkelsen, G. E. Maehlum, D. J. Wagenaar, B. M. Tsui, B. E. Patt, E. C. Frey, Phys. Med. Biol. 2011, 56, 2791; d) X. Wang, D. Meier, K. Taguchi, D. J. Wagenaar, B. E. Patt, E. C. Frey, Med. Phys. 2011, 38, 1534.
- 5a) T. Flohr, M. Petersilka, A. Henning, S. Ulzheimer, J. Ferda, B. Schmidt, Phys. Med. 2020, 79, 126; b) H. Toyokawa, K. Kajiwara, M. Sato, M. Kawase, T. Honma, M. Takagaki, Nucl. Instrum. Methods Phys. Res., Sect. A 2011, 650, 84.
- 6a) L. Abbene, G. Gerardi, A. A. Turturici, G. Raso, G. Benassi, M. Bettelli, N. Zambelli, A. Zappettini, F. Principato, Nucl. Instrum. Methods Phys. Res., Sect. A 2016, 835, 1; b) W. C. Barber, J. C. Wessel, E. Nygard, J. S. Iwanczyk, Nucl. Instrum. Methods Phys. Res., Sect. A 2015, 784, 531; c) N. Zhang, A. Yeckel, A. Burger, Y. Cui, K. G. Lynn, J. J. Derby, J. Cryst. Growth 2011, 325, 10; d) H. Shiraki, M. Funaki, Y. Ando, A. Tachibana, S. Kominami, R. Ohno, IEEE Trans. Nucl. Sci. 2009, 56, 1717.
- 7a) B. R. Whiting, C. Hoeschen, S. Kappler, A. Henning, B. Kreisler, F. Schoeck, K. Stierstorfer, T. Flohr, in Medical Imaging 2014: Physics of Medical Imaging, SPIE, Bellingham, WA, USA 2014; b) K. Taguchi, J. S. Iwanczyk, Med. Phys. 2013, 40, 100901; c) K. Taguchi, E. C. Frey, X. Wang, J. S. Iwanczyk, W. C. Barber, Med. Phys. 2010, 37, 3957; d) E. Fredenberg, M. Hemmendorff, B. Cederstrom, M. Aslund, M. Danielsson, Med. Phys. 2010, 37, 2017.
- 8a) B. Kreisler, Eur. J. Radiol. 2022, 149, 110229;
b) M. F. Santarelli, G. Giovannetti, V. Hartwig, S. Celi, V. Positano, L. Landini, Electronics 2021, 10, 1642.
10.3390/electronics10141642 Google Scholar
- 9a) L. J. Xu, X. Lin, Q. He, M. Worku, B. Ma, Nat. Commun. 2020, 11, 4329; b) X. Li, J. Chen, D. Yang, X. Chen, D. Geng, L. Jiang, Y. Wu, C. Meng, H. Zeng, Nat. Commun. 2021, 12, 3879.
- 10T. R. Johnson, AJR Am. J. Roentgenol. 2012, 199, S3.
- 11P. Ran, L. Yang, T. Jiang, X. Xu, J. Hui, Y. Su, C. Kuang, X. Liu, Y. M. Yang, Adv. Mater. 2022, 34, 2205458.
- 12a) Q. Cui, N. Bu, X. Liu, H. Li, Z. Xu, X. Song, K. Zhao, S. F. Liu, Nano Lett. 2022, 22, 5973; b) J. Hui, P. Ran, Y. Su, L. Yang, X. Xu, T. Liu, Y. M. Yang, J. Phys. Chem. C 2022, 126, 12882; c) X. Hu, P. Yan, P. Ran, L. Lu, J. Leng, Y. M. Yang, X. Li, J. Phys. Chem. Lett. 2022, 13, 2862; d) Y. He, I. Hadar, M. C. De Siena, V. V. Klepov, L. Pan, D. Y. Chung, M. G. Kanatzidis, Adv. Funct. Mater. 2022, 32, 2112925; e) S. Cheng, A. Beitlerova, R. Kucerkova, M. Nikl, G. Ren, Y. Wu, Phys. Status Solidi Rapid Res. Lett. 2020, 14, 2000374.
- 13a) X. Wu, Z. Guo, S. Zhu, B. Zhang, S. Guo, X. Dong, L. Mei, R. Liu, C. Su, Z. Gu, Adv. Sci. 2022, 9, e2200831; b) L. Lian, M. Zheng, W. Zhang, L. Yin, X. Du, P. Zhang, X. Zhang, J. Gao, D. Zhang, L. Gao, G. Niu, H. Song, R. Chen, X. Lan, J. Tang, J. Zhang, Adv. Sci. 2020, 7, 2000195; c) L. Q. Guan, S. Shi, X. W. Niu, S. C. Guo, J. Zhao, T. M. Ji, H. Dong, F. Y. Jia, J. W. Xiao, L. D. Sun, C. H. Yan, Adv. Sci. 2022, 9, 2201354.
- 14a) Y. Zhou, X. Wang, T. He, H. Yang, C. Yang, B. Shao, L. Gutiérrez-Arzaluz, O. M. Bakr, Y. Zhang, O. F. Mohammed, ACS Energy Lett. 2022, 7, 844; b) H. Li, Y. Zhang, M. Zhou, H. Ding, L. Zhao, T. Jiang, H. Y. Yang, F. Zhao, W. Chen, Z. Teng, J. Qiu, X. Yu, Y. M. Yang, X. Xu, ACS Energy Lett. 2022, 7, 2876; c) T. He, Y. Zhou, X. Wang, J. Yin, L. Gutiérrez-Arzaluz, J.-X. Wang, Y. Zhang, O. M. Bakr, O. F. Mohammed, ACS Energy Lett. 2022, 7, 2753.
- 15a) T. Yan, C. Yang, X. Cui, Solid State Commun. 2021, 332, 114339; b) Z. Shi, X. Xie, H. Li, Q. Meng, W. Cong, G. Wang, Phys. Med. Biol. 2019, 64, 135008.
- 16a) R. Lin, W. Zheng, L. Chen, Y. Zhu, M. Xu, X. Ouyang, F. Huang, Nat. Commun. 2020, 11, 4351; b) L. Pan, S. Shrestha, N. Taylor, W. Nie, L. R. Cao, Nat. Commun. 2021, 12, 5258.
- 17a) L. Z. Ying Zhou, Z. Ni, S. Xu, J. Zhao, X. Xiao, J. Huang, Sci. Adv. 2021, 7, 6716;
10.1126/sciadv.abg6716 Google Scholarb) J. Jiang, M. Xiong, K. Fan, C. Bao, D. Xin, Z. Pan, L. Fei, H. Huang, L. Zhou, K. Yao, X. Zheng, L. Shen, F. Gao, Nat. Photonics 2022, 16, 575; c) P. Büchele, M. Richter, S. F. Tedde, G. J. Matt, G. N. Ankah, R. Fischer, M. Biele, W. Metzger, S. Lilliu, O. Bikondoa, J. E. Macdonald, C. J. Brabec, T. Kraus, U. Lemmer, O. Schmidt, Nat. Photonics 2015, 9, 843.
- 18a) E. L. Ritman, Annu. Rev. Biomed. Eng. 2011, 13, 531; b) Y. Maruyama, T. Hamaguchi, T.-H. Tsai, I. Kanno, J. Nucl. Sci. Technol. 2017, 55, 199.
- 19L. C. D. L. A. Feldkamp, J. W. Kress, Opt. Soc. Am. 1984, 1, 612.