Mixed Ionic-Electronic Conduction Enables Halide-Perovskite Electroluminescent Photodetector
Corresponding Author
Alexandr Marunchenko
School of Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russian Federation
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorValeriy Kondratiev
School of Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russian Federation
Search for more papers by this authorCorresponding Author
Anatoly Pushkarev
School of Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russian Federation
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSoslan Khubezhov
School of Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russian Federation
Core Shared Research Facility "Physics and Technology of Nanostructures", North Ossetian State University, Vladikavkaz, 362025 Russian Federation
Search for more papers by this authorMikhail Baranov
School of Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russian Federation
Search for more papers by this authorAlbert Nasibulin
Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 30/1 Bolshoy Boulevard, Moscow, 121205 Russian Federation
Search for more papers by this authorCorresponding Author
Sergey Makarov
School of Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russian Federation
Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong, 266000 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Alexandr Marunchenko
School of Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russian Federation
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorValeriy Kondratiev
School of Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russian Federation
Search for more papers by this authorCorresponding Author
Anatoly Pushkarev
School of Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russian Federation
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSoslan Khubezhov
School of Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russian Federation
Core Shared Research Facility "Physics and Technology of Nanostructures", North Ossetian State University, Vladikavkaz, 362025 Russian Federation
Search for more papers by this authorMikhail Baranov
School of Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russian Federation
Search for more papers by this authorAlbert Nasibulin
Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 30/1 Bolshoy Boulevard, Moscow, 121205 Russian Federation
Search for more papers by this authorCorresponding Author
Sergey Makarov
School of Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg, 197101 Russian Federation
Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong, 266000 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Light emission and detection are the two fundamental features of optoelectronic communication systems. Until now, both functions have been realized with a p–n diode, which is used in a wide range of applications. However, due to the competing dynamics of carrier injection and photocarrier collection, in such devices, electroluminescence and photodetection are realized separately by switching the direction of the applied electrical bias. Here, mobile ions in halide perovskites are benefited from to demonstrate electroluminescence and photodetection simultaneously, without switching the direction of the applied electrical bias. The electroluminescent photodetector consists of a CsPbBr3 microwire integrated with electrodes made of a single-walled carbon nanotube thin film, providing Schottky barriers at the interfaces. The dual functionality stems from the modulation of these barriers by mobile ions in cooperation with photogenerated charge carriers. Furthermore, such complex charge dynamics additionally result in a novel effect: light-enhanced electroluminescence. The new optoelectronic phenomena demonstrated in the simple lateral device design will expand the applications of mixed ionic-electronic conductors toward cheap and efficient multifunctional optoelectronic devices able to simultaneously generate and receive optical data.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are openly available in Halide Perovskite Light Emitting Photodetector at https://doi.org/10.48550/arXiv.2210.02424 , reference number 221002424.
Supporting Information
Filename | Description |
---|---|
lpor202300141-sup-0001-SuppMat.pdf19.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G.-H. Lee, H. Moon, H. Kim, G. H. Lee, W. Kwon, S. Yoo, D. Myung, S. H. Yun, Z. Bao, S. K. Hahn, Nat. Rev. Mater. 2020, 5, 149.
- 2Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu, Z. Zhang, C. Lee, InfoMat 2020, 2, 1131.
- 3X. Zhao, H. Askari, J. Chen, Joule 2021, 5, 1391.
- 4T. Kim, S. Lee, T. Hong, G. Shin, T. Kim, Y.-L. Park, Sci. Rob. 2020, 5, eabc6878.
- 5S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang, J. Wang, Y. Jiang, X. Yan, Y. Yun, W. Burnett, A. S. Y. Poon, J. B.-H. Tok, X. Chen, Z. Bao, Nat. Electron. 2019, 2, 361.
- 6Y.-Q. Bie, G. Grosso, M. Heuck, M. M. Furchi, Y. Cao, J. Zheng, D. Bunandar, E. Navarro-Moratalla, L. Zhou, D. K. Efetov, T. Taniguchi, K. Watanabe, J. Kong, D. Englund, P. Jarillo-Herrero, Nat. Nanotechnol. 2017, 12, 1124.
- 7C. Bao, W. Xu, J. Yang, S. Bai, P. Teng, Y. Yang, J. Wang, N. Zhao, W. Zhang, W. Huang, F. Gao, Nat. Electron. 2020, 3, 156.
- 8N. Oh, B. H. Kim, S.-Y. Cho, S. Nam, S. P. Rogers, Y. Jiang, J. C. Flanagan, Y. Zhai, J.-H. Kim, J. Lee, Y. Yu, Y. K. Cho, G. Hur, J. Zhang, P. Trefonas, J. A. Rogers, M. Shim, Science 2017, 355, 616.
- 9D. Wang, X. Liu, Y. Kang, X. Wang, Y. Wu, S. Fang, H. Yu, M. H. Memon, H. Zhang, W. Hu, Z. Mi, L. Fu, H. Sun, S. Long, Nat. Electron. 2021, 4, 645.
- 10M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.
- 11L. M. Herz, ACS Energy Lett. 2017, 2, 1539.
- 12S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
- 13C. Eames, J. M. Frost, P. R. Barnes, B. C. O'regan, A. Walsh, M. S. Islam, Nat. Commun. 2015, 6, 7497.
- 14W. Tress, J. Phys. Chem. Lett. 2017, 8, 3106.
- 15G. Y. Kim, A. Senocrate, T.-Y. Yang, G. Gregori, M. Grätzel, J. Maier, Nat. Mater. 2018, 17, 445.
- 16M. Bag, L. A. Renna, R. Y. Adhikari, S. Karak, F. Liu, P. M. Lahti, T. P. Russell, M. T. Tuominen, D. Venkataraman, J. Am. Chem. Soc. 2015, 137, 13130.
- 17B.-B. Zhang, F. Wang, H. Zhang, B. Xiao, Q. Sun, J. Guo, A. B. Hafsia, A. Shao, Y. Xu, J. Zhou, Appl. Phys. Lett. 2020, 116, 063505.
- 18Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Nat. Mater. 2015, 14, 193.
- 19C. Li, A. Guerrero, S. Huettner, J. Bisquert, Nat. Commun. 2018, 9, 5113.
- 20J. Liu, M. Hu, Z. Dai, W. Que, N. P. Padture, Y. Zhou, ACS Energy Lett. 2021, 6, 1003.
- 21Y. Yuan, J. Huang, Acc. Chem. Res. 2016, 49, 286.
- 22M.-C. Yen, C.-J. Lee, K.-H. Liu, Y. Peng, J. Leng, T.-H. Chang, C.-C. Chang, K. Tamada, Y.-J. Lee, Nat. Commun. 2021, 12, 4460.
- 23A. A. Zhumekenov, M. I. Saidaminov, O. F. Mohammed, O. M. Bakr, Joule 2021, 5, 2027.
- 24Y. Wang, M. Yasar, Z. Luo, S. Zhou, Y. Yu, H. Li, R. Yang, X. Wang, A. Pan, L. Gan, T. Zhai, Small 2018, 14, 1803010.
- 25M. I. Saidaminov, M. A. Haque, J. Almutlaq, S. Sarmah, X.-H. Miao, R. Begum, A. A. Zhumekenov, I. Dursun, N. Cho, B. Murali, O. F. Mohammed, T. Wu, O. M. Bakr, Adv. Opt. Mater. 2017, 5, 1600704.
- 26A. P. Pushkarev, V. I. Korolev, D. I. Markina, F. E. Komissarenko, A. Naujokaitis, A. Drabavicius, V. Pakstas, M. Franckevicius, S. A. Khubezhov, D. A. Sannikov, A. V. Zasedatelev, P. G. Lagoudakis, A. A. Zakhidov, S. V. Makarov, ACS Appl. Mater. Interfaces 2018, 11, 1040.
- 27Z. Yang, J. Lu, M. ZhuGe, Y. Cheng, J. Hu, F. Li, S. Qiao, Y. Zhang, G. Hu, Q. Yang, D. Peng, K. Liu, C. Pan, Adv. Mater. 2019, 31, 1900647.
- 28D. Zhang, Q. Zhang, Y. Zhu, S. Poddar, Y. Zhang, L. Gu, H. Zeng, Z. Fan, Adv. Energy Mater. 2022, 2201735.
- 29E. Oksenberg, A. Merdasa, L. Houben, I. Kaplan-Ashiri, A. Rothman, I. G. Scheblykin, E. L. Unger, E. Joselevich, Nat. Commun. 2020, 11, 489.
- 30D. Zhang, Q. Zhang, B. Ren, Y. Zhu, M. Abdellah, Y. Fu, B. Cao, C. Wang, L. Gu, Y. Ding, K.-H. Tsui, S. Fan, S. Poddar, L. Shu, Y. Zhang, D.-B. Kuang, J.-F. Liao, Y. Lu, K. Zheng, Z. He, Z. Fan, Nat. Photonics 2022, 16, 284.
- 31Z. Liu, C. Zhang, X. Liu, A. Ren, Z. Zhou, C. Qiao, Y. Guan, Y. Fan, F. Hu, Y. S. Zhao, Adv. Sci. 2021, 8, 2102065.
- 32Z. Li, X. Liu, C. Zuo, W. Yang, X. Fang, Adv. Mater. 2021, 33, 2103010.
- 33A. A. Marunchenko, M. A. Baranov, E. V. Ushakova, D. R. Ryabov, A. P. Pushkarev, D. S. Gets, A. G. Nasibulin, S. V. Makarov, Adv. Funct. Mater. 2022, 32, 2109834.
- 34K. Aitola, K. Domanski, J.-P. Correa-Baena, K. Sveinbjörnsson, M. Saliba, A. Abate, M. Grätzel, E. Kauppinen, E. M. Johansson, W. Tress, A. Hagfeldt, G. Boschloo, Adv. Mater. 2017, 29, 1606398.
- 35C.-H. Lin, L. Hu, X. Guan, J. Kim, C.-Y. Huang, J.-K. Huang, S. Singh, T. Wu, Adv. Mater. 2022, 34, 2108616.
- 36S. M. Sze, Y. Li, K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, Hoboken, NJ 2021.
- 37B. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications, Springer Science & Business Media, Berlin 2013.
- 38F. Ebadi, N. Taghavinia, R. Mohammadpour, A. Hagfeldt, W. Tress, Nat. Commun. 2019, 10, 1574.
- 39D. Moia, I. Gelmetti, P. Calado, W. Fisher, M. Stringer, O. Game, Y. Hu, P. Docampo, D. Lidzey, E. Palomares, J. Nelson, P. R. F. Barnes, Energy Environ. Sci. 2019, 12, 1296.
- 40N. Filipoiu, A. T. Preda, D.-V. Anghel, R. Patru, R. E. Brophy, M. Kateb, C. Besleaga, A. G. Tomulescu, I. Pintilie, A. Manolescu, G. A. Nemnes, Phys. Rev. Appl. 2022, 18, 064087.
- 41V. K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M. E. Beck, K.-S. Chen, M. C. Hersam, Nature 2018, 554, 500.
- 42M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R. Stewart, R. S. Williams, J. Appl. Phys. 2009, 106, 074508.
- 43V. Mikheev, A. Chouprik, Y. Lebedinskii, S. Zarubin, Y. Matveyev, E. Kondratyuk, M. G. Kozodaev, A. M. Markeev, A. Zenkevich, D. Negrov, ACS Appl. Mater. Interfaces 2019, 11, 32108.
- 44M. Shiraishi, M. Ata, Carbon 2001, 39, 1913.
- 45S. Tao, I. Schmidt, G. Brocks, J. Jiang, I. Tranca, K. Meerholz, S. Olthof, Nat. Commun. 2019, 10, 2560.
- 46R. T. Tung, Appl. Phys. Rev. 2014, 1, 011304.
- 47R. T. Tung, Mater. Sci. Eng. R 2001, 35, 1.
- 48C. Huo, X. Liu, X. Song, Z. Wang, H. Zeng, J. Phys. Chem. Lett. 2017, 8, 4785.
- 49Y. Wang, Z. Wan, Q. Qian, Y. Liu, Z. Kang, Z. Fan, P. Wang, Y. Wang, C. Li, C. Jia, Z. Lin, J. Guo, I. Shakir, M. Goorsky, X. Duan, Y. Zhang, Y. Huang, X. Duan, Nat. Nanotechnol. 2020, 15, 768.
- 50B. Jeong, L. Veith, T. J. Smolders, M. J. Wolf, K. Asadi, Adv. Mater. 2021, 33, 2100486.
- 51F. Winterer, L. S. Walter, J. Lenz, S. Seebauer, Y. Tong, L. Polavarapu, R. T. Weitz, Adv. Electron. Mater. 2021, 7, 2100105.
- 52M. Lenes, G. Garcia-Belmonte, D. Tordera, A. Pertegás, J. Bisquert, H. J. Bolink, Adv. Funct. Mater. 2011, 21, 1581.
- 53F. Wu, R. Pathak, K. Chen, G. Wang, B. Bahrami, W.-H. Zhang, Q. Qiao, ACS Energy Lett. 2018, 3, 2457.
- 54H.-P. Wang, S. Li, X. Liu, Z. Shi, X. Fang, J.-H. He, Adv. Mater. 2021, 33, 2003309.
- 55H. Dong, C. Ran, W. Gao, M. Li, Y. Xia, W. Huang, eLight 2023, 3, 3.
- 56H. Wang, A. Guerrero, A. Bou, A. M. Al-Mayouf, J. Bisquert, Energy Environ. Sci. 2019, 12, 2054.
- 57D. A. Bernards, G. G. Malliaras, Adv. Funct. Mater. 2007, 17, 3538.
- 58Y. Liu, M. Pharr, G. A. Salvatore, ACS Nano 2017, 11, 9614.
- 59L. Bertoluzzi, C. C. Boyd, N. Rolston, J. Xu, R. Prasanna, B. C. O'Regan, M. D. McGehee, Joule 2020, 4, 109.
- 60M. H. Futscher, J. V. Milić, Front. Energy Res. 2021, 9, 629074.
- 61K. Sakhatskyi, R. A. John, A. Guerrero, S. Tsarev, S. Sabisch, T. Das, G. J. Matt, S. Yakunin, I. Cherniukh, M. Kotyrba, Y. Berezovska, M. I. Bodnarchuk, S. Chakraborty, J. Bisquert, M. V. Kovalenko, ACS Energy Lett. 2022, 7, 3401.
- 62F. Padovani, R. Stratton, Solid-State Electron. 1966, 9, 695.
- 63C. Crowell, V. Rideout, Solid-State Electron. 1969, 12, 89.
- 64M. Fischer, K. Tvingstedt, A. Baumann, V. Dyakonov, ACS Appl. Energy Mater. 2018, 1, 5129.
- 65S. T. Birkhold, J. T. Precht, R. Giridharagopal, G. E. Eperon, L. Schmidt-Mende, D. S. Ginger, J. Phys. Chem. C 2018, 122, 12633.
- 66S. A. Weber, I. M. Hermes, S.-H. Turren-Cruz, C. Gort, V. W. Bergmann, L. Gilson, A. Hagfeldt, M. Graetzel, W. Tress, R. Berger, Energy Environ. Sci. 2018, 11, 2404.
- 67S. Reichert, J. Flemming, Q. An, Y. Vaynzof, J.-F. Pietschmann, C. Deibel, Phys. Rev. Appl. 2020, 13, 034018.
- 68Y. Tian, A. G. Nasibulin, B. Aitchison, T. Nikitin, J. v. Pfaler, H. Jiang, Z. Zhu, L. Khriachtchev, D. P. Brown, E. I. Kauppinen, J. Phys. Chem. C 2011, 115, 7309.