Single Pulse Manipulations in Synthetic Time-Frequency Space
Guangzhen Li
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorDanying Yu
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Luqi Yuan
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]
Search for more papers by this authorXianfeng Chen
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Shanghai Research Center for Quantum Sciences, Shanghai, 201315 China
Jinan Institute of Quantum Technology, Jinan, 250101 China
Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan, 250358 China
Search for more papers by this authorGuangzhen Li
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorDanying Yu
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Luqi Yuan
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]
Search for more papers by this authorXianfeng Chen
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Shanghai Research Center for Quantum Sciences, Shanghai, 201315 China
Jinan Institute of Quantum Technology, Jinan, 250101 China
Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan, 250358 China
Search for more papers by this authorAbstract
Synthetic dimensions in photonic structures provide unique opportunities for actively manipulating light in multiple degrees of freedom. Here, a dispersive waveguide under the dynamic phase modulation is theoretically explored, which supports single pulse manipulations in the synthetic (2+1) dimensions. Compared with the counterpart of the conventional (2+1) space-time, temporal diffraction and frequency conversion in a synthetic time-frequency space are demonstrated while the pulse evolves along the spatial dimension. It is found that a rich set of pulse propagation behaviors can be achieved by introducing the effective non-uniform gauge potential for photons in the synthetic time-frequency space with the control of the modulation phase, including confined pulse propagation, fast/slow light, and pulse compression. With the additional nonperiodic oscillation subject to the effective force along the frequency axis of light, this work provides an exotic approach for actively manipulating the single pulse in both temporal and spectral domains, which shows the great promise for applications of the pulse processing and optical communications in integrated photonics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
lpor202100340-sup-0001-SuppMat.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Yuan, Q. Lin, M. Xiao, S. Fan, Optica 2018, 5, 1396.
- 2T. Ozawa, H. M. Price, Nat. Rev. Phys. 2019, 1, 349.
- 3L. Yuan, Y. Shi, S. Fan, Opt. Lett. 2016, 41, 741.
- 4T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, I. Carusotto, Phys. Rev. A 2016, 93, 043827.
- 5B. A. Bell, K. Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov, B. J. Eggleton, Optica 2017, 4, 1433.
- 6C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, P. Lu, Phys. Rev. Lett. 2018, 120, 133901.
- 7X. Luo, X. Zhou, C. Li, J. Xu, G. Guo, Z. Zhou, Nat. Commun. 2015, 6, 7704.
- 8A. Regensburger, C. Bersch, B. Hinrichs, G. Onishchukov, A. Schreiber, C. Silberhorn, U. Peschel, Phys. Rev. Lett. 2011, 107, 233902.
- 9A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, U. Peschel, Nature 2012, 488, 167.
- 10E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, M. Segev, Nature 2019, 567, 356.
- 11L. J. Maczewsky, K. Wang, A. A. Dovgiy, A. E. Miroshnichenko, A. Moroz, M. Ehrhardt, M. Heinrich, D. N. Christodoulides, A. Szameit, A. A. Sukhorukov, Nat. Photonics 2020, 14, 76.
- 12K. Wang, B. A. Bell, A. S. Solntsev, D. N. Neshev, B. J. Eggleton, A. A. Sukhorukov, Light Sci. Appl. 2020, 9, 132.
- 13L. Yuan, S. Fan, Optica 2016, 3, 1014.
- 14X. W. Luo, C. Zhang, G. C. Guo, Z. W. Zhou, Phys. Rev. A 2018, 97, 043841.
- 15L. Yuan, Q. Lin, M. Xiao, A. Dutt, S. Fan, APL Photonics 2018, 3, 086103.
- 16Z. Yang, E. Lustig, G. Harari, Y. Plotnik, Y. Lumer, M. A. Bandres, M. Segev, Phys. Rev. X 2020, 10, 011059.
- 17L. Yuan, Q. Lin, A. Zhang, M. Xiao, X. Chen, S. Fan, Phys. Rev. Lett. 2019, 122, 083903.
- 18A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao, S. Fan, Science 2020, 367, 59.
- 19W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, Nature 2003, 424, 511.
- 20S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, C. W. Wong, Phys. Rev. Lett. 2015, 114, 053901.
- 21S. Divitt, W. Zhu, C. Zhang, H. J. Lezec, A. Agrawal, Science 2019, 364, 890.
- 22N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, R. I. Laming, Phys. Rev. Lett. 1997, 79, 4566.
- 23P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, A. De Rossi, Nat. Photonics 2010, 4, 862.
- 24D. T. H. Tan, P. C. Sun, Y. Fainman, Nat. Commun. 2010, 1, 116.
- 25M. Stratmann, T. Pagel, F. Mitschke, Phys. Rev. Lett. 2005, 95, 143902.
- 26S. H. Lee, D. Y. Oh, Q. F. Yang, B. Shen, H. Wang, K. Y. Yang, Y. H. Lai, X. Yi, X. Li, K. Vahala, Nat. Commun. 2017, 8, 1295.
- 27G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, R. W. Boyd, Science 2006, 312, 895.
- 28G. Li, Y. Chen, H. Jiang, Y. Liu, X. Liu, X. Chen, Opt. Express 2015, 23, 18345.
- 29T. Qin, J. Yang, F. Zhang, Y. Chen, D. Shen, W. Liu, L. Chen, X. Jiang, X. Chen, W. Wan, Commun. Phys. 2020, 3, 118.
- 30G. P. Agrawal, Nonlinear Fiber Optics, Elsevier Science, Amsterdam 2010.
- 31U. Peschel, C. Bersch, G. Onishchukov, Centr. Eur. J. Phys. 2008, 6, 619.
- 32B. W. Plansinis, W. R. Donaldson, G. P. Agrawal, Phys. Rev. Lett. 2015, 115, 183901.
- 33B. W. Plansinis, W. R. Donaldson, G. P. Agrawal, J. Opt. Soc. Am. B 2016, 33, 1112.
- 34Q. Lin, S. Fan, Phys. Rev. X 2014, 4, 031031.
- 35Y. Lumer, M. A. Bandres, M. Heinrich, L. J. Maczewsky, H. Herzig-Sheinfux, A. Szameit, M. Segev, Nat. Photonics 2019, 13, 339.
- 36M. I. Cohen, C. Jörg, Y. Lumer, Y. Plotnik, E. H. Waller, J. Schulz, G. v. Freymann, M. Segev, Light Sci. Appl. 2020, 9, 200.
- 37F. Y. Gan, G. L. Yip, in Applications of Photonic Technology 2, Springer, New York 1997, pp. 469–475.
10.1007/978-1-4757-9250-8_76 Google Scholar
- 38C. Qin, L. Yuan, B. Wang, S. Fan, P. Lu, Phys. Rev. A 2018, 97, 063838.
- 39I. Krasnokutska, J.-L. J. Tambasco, X. Li, A. Peruzzo, Opt. Express 2018, 26, 897.
- 40D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, M. Lončar, Adv. Opt. Photon. 2021, 13, 242.
- 41M. A. Gaafar, T. Baba, M. Eich, A. Y. Petrov, Nat. Photonics 2019, 13, 737.
- 42A. Yariv, Optical Electronics, Saunders College Publishing, Philadelphia 1991.
- 43L. Yuan, D. W. Wang, S. Fan, Phys. Rev. A 2017, 95, 033801.
- 44G. Li, Y. Zheng, A. Dutt, D. Yu, Q. Shan, S. Liu, L. Yuan, S. Fan, X. Chen, Sci. Adv. 2021, 7, eabe4335.
- 45M. Luennemann, U. Hartwig, G. Panotopoulos, K. Buse, Appl. Phys. B 2003, 76, 403.
- 46A. Kaushalram, S. A. Samad, G. Hegde, S. Talabattula, IEEE Photon. J. 2019, 11, 1.
- 47C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar, Nature 2018, 562, 101.
- 48X. Liu, B. Xiong, C. Sun, Z. Hao, L. Wang, J. Wang, Y. Han, H. Li, J. Yu, Y. Luo in Conference on Lasers and Electro-Optics/Pacific Rim. Optical Society of America, 2020 C4C_3.
- 49Q. Shan, D. Yu, G. Li, L. Yuan, X. Chen, Prog. Electromagn. Res. 2020, 169.
- 50I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, Y. A. Vlasov, Opt. Express 2006, 14, 12380.
- 51M. B. Mia, N. Jaidye, S. Kim, Opt. Express 2019, 27, 10426.
- 52X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner, Nat. Photonics 2015, 9, 594.
- 53K. Y. Yang, K. Beha, D. C. Cole, X. Yi, P. Del'Haye, H. Lee, J. Li, D. Y. Oh, S. A. Diddams, S. B. Papp, K. J. Vahala, Nat. Photonics 2016, 10, 316.
- 54Z. Chen, M. Segev, eLight 2021, 1, 2.