Time-Domain Integration of Broadband Terahertz Pulses in a Tapered Two-Wire Waveguide
Giacomo Balistreri
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada
Department of Engineering, University of Palermo, Viale delle Scienze, Palermo, 90128 Italy
Search for more papers by this authorCorresponding Author
Alessandro Tomasino
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada
E-mail: [email protected], [email protected]
Search for more papers by this authorJunliang Dong
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada
Search for more papers by this authorAycan Yurtsever
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada
Search for more papers by this authorSalvatore Stivala
Department of Engineering, University of Palermo, Viale delle Scienze, Palermo, 90128 Italy
Search for more papers by this authorJosé Azaña
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada
Search for more papers by this authorCorresponding Author
Roberto Morandotti
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada
University of Electronic Science and Technology of China (UESTC), Sichuan, 610054 China
E-mail: [email protected], [email protected]
Search for more papers by this authorGiacomo Balistreri
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada
Department of Engineering, University of Palermo, Viale delle Scienze, Palermo, 90128 Italy
Search for more papers by this authorCorresponding Author
Alessandro Tomasino
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada
E-mail: [email protected], [email protected]
Search for more papers by this authorJunliang Dong
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada
Search for more papers by this authorAycan Yurtsever
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada
Search for more papers by this authorSalvatore Stivala
Department of Engineering, University of Palermo, Viale delle Scienze, Palermo, 90128 Italy
Search for more papers by this authorJosé Azaña
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada
Search for more papers by this authorCorresponding Author
Roberto Morandotti
INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada
University of Electronic Science and Technology of China (UESTC), Sichuan, 610054 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
In this work, the time-domain integration of broadband terahertz (THz) pulses via a tapered two-wire waveguide (TTWWG) is reported. Such a guiding structure consists of two metallic wires separated by a variable air gap that shrinks down to a subwavelength size as the movement takes from the waveguide input to its output. It is shown that while an input THz pulse propagates toward the subwavelength output gap, it is reshaped into its first-order time integral waveform. In order to prove the TTWWG time integration functionality, the THz pulse is detected directly within the output gap of the waveguide, so as to prevent the outcoupling diffraction from altering the shape of the time-integrated THz transient. Since the time-domain integration is due to the tight geometrical confinement of the THz radiation in a subwavelength gap volume, the TTWWG operational spectral range can easily be tuned by judiciously changing both the output gap size and the tapering angle. The results lead to the physical realization of a broadband, analog THz time integrator device, which is envisioned to serve as a key building block for the implementation of complex and ultrahigh-speed analog signal processing operations in THz communication systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
lpor202100051-sup-0001-suppMat.pdf1,013.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Tonouchi, Nat. Photonics 2007, 1, 97.
- 2B. Ferguson, X.-C. Zhang, Nat. Mater. 2002, 1, 26.
- 3N. Horiuchi, Nat. Photonics 2010, 4, 140.
- 4H. W. Hübers, Nat. Photonics 2010, 4, 503.
- 5Y. S. Lee, Principles of Terahertz Science and Technology, Springer, Berlin 2009.
- 6A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, R. Morandotti, Sci. Rep. 2013, 3, 3116.
- 7D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, M. C. Nuss, Appl. Phys. B: Lasers Opt. 1998, 67, 379.
- 8C. Zandonella, Nature 2003, 424, 721.
- 9J. Dong, H. Breitenborn, R. Piccoli, L. V. Besteiro, P. You, D. Caraffini, Z. M. Wang, A. O. Govorov, R. Naccache, F. Vetrone, L. Razzari, R. Morandotti, Biomed. Opt. Express 2020, 11, 2254.
- 10H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, R. Morandotti, APL Photonics 2019, 4, 126106.
- 11W. Withayachumnankul, D. Abbott, Nat. Photonics 8, 593 2014.
- 12D. M. Mittleman, Opt. Express 2018, 26, 9417.
- 13F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, U. Ewert, Int. J. Infrared Millimeter Waves 2006, 27, 547.
- 14K. L. Nguyen, T. Friščić, G. M. Day, L. F. Gladden, W. Jones, Nat. Mater. 2007, 6, 206.
- 15T. Nagatsuma, G. Ducournau, C. C. Renaud, Nat. Photonics 2016, 10, 371.
- 16S. Ummethala, T. Harter, K. Koehnle, Z. Li, S. Muehlbrandt, Y. Kutuvantavida, J. Kemal, P. Marin-Palomo, J. Schaefer, A. Tessmann, S. K. Garlapati, A. Bacher, L. Hahn, M. Walther, T. Zwick, S. Randel, W. Freude, C. Koos, Nat. Photonics 13, 519 2019.
- 17H. J. Song, T. Nagatsuma, IEEE Trans. Terahertz Sci. Technol. 1, 256 2011.
- 18A. J. Seeds, H. Shams, M. J. Fice, C. C. Renaud, J. Light. Technol. 2015, 33, 579.
- 19J. Federici, L. Moeller, J. Appl. Phys. 107, 2010.
- 20S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, B. M. Fischer, Appl. Phys. Lett. 2012, 100, 261109.
- 21R. Mendis, A. Nag, F. Chen, D. M. Mittleman, Appl. Phys. Lett. 2010, 97, 131106.
- 22M. K. Mridha, A. Mazhorova, M. Clerici, I. Al-Naib, M. Daneau, X. Ropagnol, M. Peccianti, C. Reimer, M. Ferrera, L. Razzari, F. Vidal, R. Morandotti, Opt. Express 2014, 22, 22340.
- 23J. Xie, X. Zhu, H. Zhang, X. Zang, L. Chen, A. V. Balakin, A. P. Shkurinov, Y. Zhu, Opt. Express 2020, 28, 7898.
- 24D. Mittleman, Nature 2006, 444, 560.
- 25N. Karl, K. Reichel, H. T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, D. M. Mittleman, Appl. Phys. Lett. 2014, 104, 091115.
- 26K. S. Reichel, N. Lozada-Smith, I. D. Joshipura, J. Ma, R. Shrestha, R. Mendis, M. D. Dickey, D. M. Mittleman, Nat. Commun. 2018, 9, 4202.
- 27T. Yasui, H. Takahashi, K. Kawamoto, Y. Iwamoto, K. Arai, T. Araki, H. Inaba, K. Minoshima, Opt. Express 2011, 19, 4428.
- 28M. Katoh, S. Bielawski, Nat. Photonics 2012, 6, 76.
- 29A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, M. Alexander, Appl. Phys. Lett. 1994, 64, 1324.
- 30M. Tani, S. Matsuura, K. Sakai, S. Nakashima, Appl. Opt. 1997, 36, 7853.
- 31D. J. Cook, R. M. Hochstrasser, Opt. Lett. 2000, 25, 1210.
- 32M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguère, A. Lotti, A. Couairon, F. Légaré, T. Ozaki, D. Faccio, R. Morandotti, Phys. Rev. Lett. 2013, 110.
- 33N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, J. Azaña, Opt. Express 2007, 15, 371.
- 34M. Kulishov, J. Azaña, Opt. Express 2007, 15, 6152.
- 35C. Cuadrado-Laborde, M. V. Andrés, Opt. Lett. 2009, 34, 833.
- 36M. A. Preciado, M. A. Muriel, Opt. Lett. 2008, 33, 1348.
- 37A. Filin, M. Stowe, R. Kersting, Opt. Lett. 2001, 26, 2008.
- 38F. Amirkhan, A. Robichaud, X. Ropagnol, M. Gratuze, T. Ozaki, F. Nabki, F. Blanchard, Opt. Lett. 2020, 45, 3589.
- 39R. Mendis, D. Grischkowsky, Opt. Lett. 2001, 26, 846.
- 40K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X. C. Zhang, P. U. Jepsen, Appl. Phys. Lett. 2011, 99, 071113.
- 41M. Mbonye, R. Mendis, D. M. Mittleman, Appl. Phys. Lett. 2009, 95, 233506.
- 42R. E. Collin, Foundations for Microwave Engineering, IEEE Press, Piscataway, NJ 2001.
10.1109/9780470544662 Google Scholar
- 43S. Ramo, J. R. Whinnery, T. Van Duzar, Fields and Waves in Communication Electronics Wiley, New York 1997.
- 44G. Yan, A. Markov, Y. Chinifooroshan, S. M. Tripathi, W. J. Bock, M. Skorobogatiy, Opt. Lett. 2013, 38, 3089.
- 45E. S. Lee, T.-I. Jeon, Opt. Express 2012, 20, 29605.
- 46E. S. Lee, S.-G. Lee, C.-S. Kee, T.-I. Jeon, Opt. Express 2011, 19, 14852.
- 47S. Haykin, M. Michael, An Introduction to Analog and Digital Communications, Wiley, New York 2006.
- 48J. Azaña, IEEE Photonics J. 2, 359 2010.
- 49M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, J. Azaña, Nat. Commun. 2010, 1, 1.
- 50J.-H. Kang, D.-S. Kim, M. Seo, 2018, 7, 763.
- 51M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, D. S. Kim, Nat. Photonics 2009, 3, 152.
- 52A. Tomasino, R. Piccoli, Y. Jestin, S. Delprat, M. Chaker, M. Peccianti, M. Clerici, A. Busacca, L. Razzari, R. Morandotti, APL Photonics 2018, 3, 110805.
- 53H. Pahlevaninezhad, T. E. Darcie, B. Heshmat, Opt. Express 2010, 18, 7415.
- 54H. A. Bethe, Phys. Rev. 1944, 66, 163.
- 55K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, P. U. Jepsen, Opt. Express 2012, 20, 8344.
- 56Q. Wu, X. C. Zhang, Appl. Phys. Lett. 1995, 67, 3523.
- 57Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, Appl. Phys. Lett. 2004, 85, 164.
- 58N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X. C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, Appl. Phys. Lett. 2008, 92, 011131.
- 59A. Nahata, T. F. Heinz, Opt. Lett. 1998, 23, 67.
- 60J. Liu, J. D. J. Dai, S. L. C. S. L. Chin, X.-C. Zhang, in Lasers Electro-Optics Quantum Electron, Laser Sci. Conf. (QELS), 2010 Conference, Vol. 4, OSA, San Jose, California, United States 2010, p. 627.
- 61J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, J. Kuhl, Appl. Phys. B: Lasers Opt. 2004, 78, 593.
- 62J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, Elsevier, Amsterdam 2006.
- 63F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, L. E. Meester, A Modern Introduction to Probability and Statistics, Springer, London 2005.
10.1007/1-84628-168-7 Google Scholar
- 64A. Tomasino, A. Mazhorova, M. Clerici, M. Peccianti, S.-P. Ho, Y. Jestin, A. Pasquazi, A. Markov, X. Jin, R. Piccoli, S. Delprat, M. Chaker, A. Busacca, J. Ali, L. Razzari, R. Morandotti, Optica. 2017, 4, 1358.
- 65P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, New J. Phys. 2013, 15, 075012.
- 66M. Aoki, S. R. Tripathi, M. Takeda, N. Hiromoto, Infrared Phys. Technol. 2013, 56, 8.
- 67R. Slavík, Y. Park, N. Ayotte, S. Doucet, T.-J. Ahn, S. LaRochelle, J. Azaña, Opt. Express 2008, 16, 18202.