Distributed Quantum Fiber Magnetometry
Corresponding Author
Shai Maayani
Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
E-mail: [email protected]Search for more papers by this authorChristopher Foy
Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorDirk Englund
Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorYoel Fink
Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorCorresponding Author
Shai Maayani
Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
E-mail: [email protected]Search for more papers by this authorChristopher Foy
Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorDirk Englund
Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorYoel Fink
Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorAbstract
Nitrogen-vacancy (NV) quantum magnetometers offer exceptional sensitivity and long-term stability. However, their use to date in distributed sensing applications, including remote detection of ferrous metals, geophysics, and biosensing, is limited due to the need to combine optical, microwave (MW), and magnetic excitations into a single system. Existing approaches have yielded localized devices but not distributed capabilities. In this study, a continuous system-in-a-fiber architecture is reported, which enables distributed magnetic sensing over extended lengths. Key to this realization is a thermally drawn fiber that has hundreds of embedded photodiodes connected in parallel and a hollow optical waveguide that contains a fluid with NV diamonds. This fiber is placed in a larger coaxial cable to deliver the required MW excitation. This distributed quantum sensor is realized in a water-immersible 90-m-long cable with 102 detection sites. A sensitivity of 63 ± 5 nT Hz−1/2 per site, limited by laser shot noise, is established along a 90 m test section. This fiber architecture opens new possibilities as a robust and scalable platform for distributed quantum sensing technologies.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
lpor201900075-sup-0001-suppMat.pdf824.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Bao, D. J. Webb, D. A. Jackson, Opt. Lett. 1993, 18, 1561.
- 2S. A. Wade, S. F. Collins, G. W. Baxter, J. Appl. Phys. 2003, 94, 4743.
- 3V. Bhatia, A. M. Vengsarkar, Opt. Lett. 1996, 21, 692.
- 4K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, Opt. Lett. 1991, 16, 273.
- 5W. Yuan, A. Stefani, O. Bang, IEEE Photonics Technol. Lett. 2012, 24, 401.
- 6B. Lee, Opt. Fiber Technol. 2003, 9, 57.
- 7J. Xu, G. Pickrell, X. Wang, W. Peng, K. Cooper, A. Wang, IEEE Photonics Technol. Lett. 2005, 17, 870.
- 8W. Wang, N. Wu, Y. Tian, C. Niezrecki, X. Wang, Opt. Express 2010, 18, 9006.
- 9J. P. Dakin, Distributed optical fiber sensors. Distributed and Multiplexed Fiber Optic Sensors II, Vol. 1797, International Society for Optics and Photonics, 1993.
- 10M. A. Soto, L. Thévenaz, Opt. Express 2013, 21, 31347.
- 11J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, Electron. Lett. 1985, 21, 569.
- 12S. J. DeVience, L. M. Pham, I. Lovchinsky, A. O. Sushkov, N. Bar-Gill, C. Belthangady, F. Casola, M. Corbett, H. Zhang, M. Lukin, Nat. Nanotechnol. 2015, 10, 129.
- 13M. S. Grinolds, S. Hong, P. Maletinsky, L. Luan, M. D. Lukin, R. L. Walsworth, A. Yacoby, Nat. Phys. 2013, 9, 215.
- 14J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, Nature 2008, 455, 644.
- 15L. Rondin, J. P. Tetienne, T. Hingant, J. F. Roch, P. Maletinsky, V. Jacques, Rep. Prog. Phys. 2014, 77, 056503.
- 16H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, D. Braje, Appl. Phys. Lett. 2018, 112, 252406.
- 17G. Chatzidrosos, A. Wickenbrock, L. Bougas, N. Leefer, T. Wu, K. Jensen, Y. Dumeige, D. Budker, Phys. Rev. Appl. 2017, 8, 44019.
- 18S. Steinert, F. Dolde, P. Neumann, A. Aird, B. Naydenov, G. Balasubramanian, F. Jelezko, J. Wrachtrup, Rev. Sci. Instrum. 2010, 81, 043705.
- 19D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, R. L. Walsworth, Nature 2018, 555, 351.
- 20J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, ACS Nano 2009, 3, 1959.
- 21G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, Nat. Mater. 2009, 8, 383.
- 22I. V Fedotov, S. M. Blakley, E. E. Serebryannikov, P. Hemmer, M. O. Scully, A. M. Zheltikov, Opt. Lett. 2016, 41, 472.
- 23X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, G. Wang, Appl. Phys. Lett. 2013, 103, 143105.
- 24T. Schroder, A. W. Schell, G. Kewes, T. Aichele, O. Benson, Nano Lett. 2011, 11, 198.
- 25M. Rein, V. D. Favrod, C. Hou, T. Khudiyev, A. Stolyarov, J. Cox, C.-C. Chung, C. Chhav, M. Ellis, J. Joannopoulos, Y. Fink, Nature 2018, 560, 214.
- 26M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, Y. Fink, Nature 2004, 431, 826.
- 27A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, Y. Fink, Adv. Mater. 2012, 24, 6005.
- 28M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. L. Hollenberg, Phys. Rep. 2013, 528, 1.
- 29K. Fang, V. M. Acosta, C. Santori, Z. Huang, K. M. Itoh, H. Watanabe, S. Shikata, R. G. Beausoleil, Phys. Rev. Lett. 2013, 110, 130802.
- 30C. Foy, L. Zhang, M. E. Trusheim, K. R. Bagnall, M. Walsh, E. N. Wang, D. R. Englund, arXiv:1903.05717, 2019.
- 31A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, Y. Fink, Nat. Photonics 2012, 6, 229.
- 32D. Kim, M. I. Ibrahim, C. Foy, M. E. Trusheim, R. Han, D. R. Englund, arXiv:1810.01056, 2018.
- 33H. Clevenson, M. E. Trusheim, C. Teale, T. Schröder, D. Braje, D. Englund, Nat. Phys. 2015, 11, 393.
- 34M. E. Trusheim, L. Li, A. Laraoui, E. H. Chen, H. Bakhru, T. Schröder, O. Gaathon, C. A. Meriles, D. Englund, Nano Lett. 2014, 14, 32.
- 35A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, D. Budker, Appl. Phys. Lett. 2016, 109, 053505.
- 36R. Akhmedzhanov, L. Gushchin, N. Nizov, V. Nizov, D. Sobgayda, I. Zelensky, P. Hemmer, Phys. Rev. A 2017, 96, 13806.
- 37J. D. A. Wood, J.-P. Tetienne, D. A. Broadway, L. T. Hall, D. A. Simpson, A. Stacey, L. C. L. Hollenberg, Nat. Commun. 2017, 8, 15950.
- 38C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, Phys. Rev. Lett. 2006, 97, 247401.
- 39C. Wei, N. B. Manson, J. Opt. B: Quantum Semiclass. Opt. 1999, 1, 464.