Biochar drives changes in soil bacterial communities and cotton growth by improving nutrients availability under saline conditions
Yuting Wang
Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
Search for more papers by this authorGuangli Tian
Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
Search for more papers by this authorHusen Qiu
School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui, China
Search for more papers by this authorXinguo Zhou
Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
Search for more papers by this authorQingqing Zhao
Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
Search for more papers by this authorYuyu Tian
Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
Search for more papers by this authorCorresponding Author
Dongwei Li
Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
Correspondence
Dongwei Li, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, 380 Hongli Avenue East, Xinxiang, Henan Province 453002, People's Republic of China.
Email: [email protected]
Search for more papers by this authorYuting Wang
Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
Search for more papers by this authorGuangli Tian
Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
Search for more papers by this authorHusen Qiu
School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui, China
Search for more papers by this authorXinguo Zhou
Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
Search for more papers by this authorQingqing Zhao
Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
Search for more papers by this authorYuyu Tian
Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
Search for more papers by this authorCorresponding Author
Dongwei Li
Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
Correspondence
Dongwei Li, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, 380 Hongli Avenue East, Xinxiang, Henan Province 453002, People's Republic of China.
Email: [email protected]
Search for more papers by this authorAbstract
Applying biochar to saline soil is a novel strategy for improving soil quality. However, how biochar addition amount affects soil nutrients, bacterial communities, and cotton growth at different stages remains unclear. Three biochar treatments, no biochar (BC0), 1% biochar (BC1, w/w), 3% biochar (BC3), and two cotton varieties, salt-sensitive (SS) and salt-tolerant (ST), were used in pot experiments, analyzing biochar effects on saline soil nutrients, bacterial communities, and cotton growth. The study found that biochar increased only organic carbon (SOC), total nitrogen (TN), and available potassium (AK) at the seedling stage. However, at the flowering-boll stage, biochar also increased nitrate () and available phosphorus (AP) and reduced soil salt content. Biochar did not affect α-diversity at the seedling stage, but BC3 reduced α-diversity at the flowering-boll stage. The principal coordinate analysis revealed changes in the soil bacterial community composition that were closely associated with biochar added. From the redundancy analyses, SOC and AK were the leading environmental factors for soil bacterial community composition changes. SOC, TN, and AK correlated positively with Proteobacteria, which increased their relative abundance through biochar addition and correlated negatively with Bacteroidetes, Chloroflexi, and Acidobacteria, which decreased their relative abundance due to biochar. Furthermore, the random forests analysis showed that SOC, Shannon index, and β-diversity were significant predictors of cotton biomass. In summary, biochar drives changes in bacterial communities in saline soils by increasing nutrients such as SOC and AK, which affect cotton growth. This study provides data to support the application of biochar on saline soils.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request
Supporting Information
Filename | Description |
---|---|
ldr4990-sup-0001-supinfo.docxWord 2007 document , 1.2 MB | Figure S1. The heat map was used to illustrate significant correlations between soil, plant indicators, and soil bacterial alpha diversity at the seedling stage (a) and the flowering-boll stage (b). The different colors of each cell in the heatmap indicate the magnitude of the correlation coefficient, with darker blue indicating a stronger negative correlation and darker orange indicating a stronger positive correlation. “*” indicates significance p < 0.05 and “**” indicates significance p < 0.01. AK, available potassium; AP, available phosphorus; BI, biomass; LA, leaf area; NH4, ammonium nitrogen; NO3, nitrate nitrogen; Ph, plant high; SD, stem diameter; SOC, soil organic carbon; TN, total nitrogen; TSC, the salt content. Table S1. Bacterial relative abundance at the phylum level (top 7). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abdelraheem, A., Esmaeili, N., O'Connell, M., & Zhang, J. (2019). Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops and Products, 130, 118–129. https://doi.org/10.1016/j.indcrop.2018.12.070
- Adeli, A., Brooks, J. P., Miles, D., Misna, T., Feng, G., & Jenkins, J. N. (2022). Combined effects of organic amendments and fertilization on cotton growth and yield. Agronomy Journal, 114(6), 3445–3456. https://doi.org/10.1002/agj2.21178
- Akhtar, S. S., Andersen, M. N., & Liu, F. (2015a). Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science, 201(5), 368–378. https://doi.org/10.1111/jac.12132
- Akhtar, S. S., Andersen, M. N., & Liu, F. (2015b). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61–68. https://doi.org/10.1016/j.agwat.2015.04.010
- Alburquerque, J. A., Calero, J. M., Barrón, V., Torrent, J., del Campillo, M. C., Gallardo, A., & Villar, R. (2014). Effects of biochars produced from different feedstocks on soil properties and sunflower growth. Journal of Plant Nutrition and Soil Science, 177(1), 16–25. https://doi.org/10.1002/jpln.201200652
- Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., Arif, M. S., Hafeez, F., Al-Wabel, M. I., & Shahzad, A. N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environmental Science and Pollution Research, 24(14), 12700–12712. https://doi.org/10.1007/s11356-017-8904-x
- Amini, S., Ghadiri, H., Chen, C., & Marschner, P. (2016). Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. Journal of Soils and Sediments, 16(3), 939–953. https://doi.org/10.1007/s11368-015-1293-1
- Amoakwah, E., Arthur, E., Frimpong, K. A., Lorenz, N., Rahman, M. A., Nziguheba, G., & Islam, K. R. (2022). Biochar amendment impacts on microbial community structures and biological and enzyme activities in a weathered tropical sandy loam. Applied Soil Ecology, 172, 104364. https://doi.org/10.1016/j.apsoil.2021.104364
- Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A., & Sherlock, R. R. (2011). Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54(5–6), 309–320. https://doi.org/10.1016/j.pedobi.2011.07.005
- Bai, N. L., Zhang, H. L., Zhou, S., Sun, H. F., Zhao, Y. Y., Zheng, X. Q., Li, S. X., Zhang, J. Q., & Lv, W. G. (2020). Long-term effects of straw return and straw-derived biochar amendment on bacterial communities in soil aggregates. Scientific Reports, 10(1), 7891. https://doi.org/10.1038/s41598-020-64857-w
- Bamminger, C., Poll, C., Sixt, C., Högy, P., Wüst, D., Kandeler, E., & Marhan, S. (2016). Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agriculture, Ecosystems & Environment, 233, 308–317. https://doi.org/10.1016/j.agee.2016.09.016
- Banerjee, S., Kirkby, C. A., Schmutter, D., Bissett, A., Kirkegaard, J. A., & Richardson, A. E. (2016). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology and Biochemistry, 97, 188–198. https://doi.org/10.1016/j.soilbio.2016.03.017
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9
- Bremner, J. M. (1996). Nitrogen total. In D. L. Sparks (Ed.), Methods of soil analysis part 3: Chemical methods, SSSA book series 5 (pp. 1085–1122). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3.c37
10.2136/sssabookser5.3.c37 Google Scholar
- Burns, K. N., Bokulich, N. A., Cantu, D., Greenhut, R. F., Kluepfel, D. A., O'Geen, A. T., Strauss, S. L., & Steenwerth, K. L. (2016). Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: Differentiation by vineyard management. Soil Biology and Biochemistry, 103, 337–348. https://doi.org/10.1016/j.soilbio.2016.09.007
- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869
- Chen, L. J., Jiang, Y. J., Liang, C., Luo, Y., Xu, Q. S., Han, C., Zhao, Q. G., & Sun, B. (2019). Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome, 7(1), 77. https://doi.org/10.1186/s40168-019-0693-7
- Chen, W. F., Meng, J., Han, X. R., Lan, Y., & Zhang, W. M. (2019). Past, present, and future of biochar. Biochar, 1(1), 75–87. https://doi.org/10.1007/s42773-019-00008-3
10.1007/s42773-019-00008-3 Google Scholar
- Chi, C. M., Zhao, C. W., Sun, X. J., & Wang, Z. C. (2012). Reclamation of saline-sodic soil properties and improvement of rice (Oriza sativa L.) growth and yield using desulfurized gypsum in the west of Songnen plain, Northeast China. Geoderma, 187–188, 24–30. https://doi.org/10.1016/j.geoderma.2012.04.005
- Dahlawi, S., Naeem, A., Rengel, Z., & Naidu, R. (2018). Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of the Total Environment, 625, 320–335. https://doi.org/10.1016/j.scitotenv.2017.12.257
- Dai, Z. M., Xiong, X. Q., Zhu, H., Xu, H. J., Leng, P., Li, J. H., Tang, C., & Xu, J. M. (2021). Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar, 3(3), 239–254. https://doi.org/10.1007/s42773-021-00099-x
- DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M., & Radosevich, M. (2011). Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil. Applied and Environmental Microbiology, 77(17), 6295–6300. https://doi.org/10.1128/AEM.05005-11
- Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., Berdugo, M., Campbell, C. D., & Singh, B. K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. https://doi.org/10.1038/ncomms10541
- Dikinya, O., Hinz, C., & Aylmore, G. (2006). Dispersion and re-deposition of fine particles and their effects on saturated hydraulic conductivity. Soil Research, 44(1), 47–56. https://doi.org/10.1071/sr05067
- Dong, R. Z., Wang, X. L., Wang, Y. L., Ma, Y. S., Yang, S. H., Zhang, L. T., Zhang, M., Qin, J. P., & Quzha, R. Z. (2023). Differences in soil microbial communities with successional stage depend on vegetation coverage and soil substrates in alpine desert shrublands. Plant and Soil, 485, 549–568. https://doi.org/10.1007/s11104-022-05849-9
- Dong, W. L., Li, X., Wang, E. Z., Liu, X. D., Wang, M., Song, A. L., Yin, H. Q., & Fan, F. L. (2021). Linking microbial taxa and the effect of mineral nitrogen forms on residue decomposition at the early stage in arable soil by DNA-qSIP. Geoderma, 400, 115127. https://doi.org/10.1016/j.geoderma.2021.115127
- Du, L., Cai, C. P., Wu, S., Zhang, F., Hou, S., & Guo, W. Z. (2016). Evaluation and exploration of favorable QTL alleles for salt stress related traits in cotton cultivars (G. hirsutum L.). PLoS ONE, 11(3), e0151076. https://doi.org/10.1371/journal.pone.0151076
- Du, M. C., Zhang, J. Y., Wang, G. Q., Liu, C. S., & Wang, Z. L. (2022). Response of bacterial community composition and co-occurrence network to straw and straw biochar incorporation. Frontiers in Microbiology, 13, 999399. https://doi.org/10.3389/fmicb.2022.999399
- Eisenhauer, N., Lanoue, A., Strecker, T., Scheu, S., Steinauer, K., Thakur, M. P., & Mommer, L. (2017). Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports, 7, 44641. https://doi.org/10.1038/srep44641
- El-Naggar, A., El-Naggar, A. H., Shaheen, S. M., Sarkar, B., Chang, S. X., Tsang, D. C. W., Rinklebe, J., & Ok, Y. S. (2019). Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. Journal of Environmental Management, 241, 458–467. https://doi.org/10.1016/j.jenvman.2019.02.044
- Fageria, N. K., Gheyi, H. R., & Moreira, A. (2011). Nutrient bioavailability in salt affected soils. Journal of Plant Nutrition, 34(7), 945–962. https://doi.org/10.1080/01904167.2011.555578
- Fan, K. K., Weisenhorn, P., Gilbert, J. A., & Chu, H. Y. (2018). Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biology and Biochemistry, 125, 251–260. https://doi.org/10.1016/j.soilbio.2018.07.022
- Farrell, M., Macdonald, L. M., Butler, G., Chirino-Valle, I., & Condron, L. M. (2013). Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils, 50(1), 169–178. https://doi.org/10.1007/s00374-013-0845-z
- Feng, Y. F., Sun, H. J., Xue, L. H., Liu, Y., Gao, Q., Lu, K. P., & Yang, L. Z. (2017). Biochar applied at an appropriate rate can avoid increasing NH(3) volatilization dramatically in rice paddy soil. Chemosphere, 168, 1277–1284. https://doi.org/10.1016/j.chemosphere.2016.11.151
- Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. Y. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46–59. https://doi.org/10.1016/j.agee.2015.03.015
- He, K., He, G., Wang, C. P., Zhang, H. P., Xu, Y., Wang, S. M., Kong, Y. Z., Zhou, G. K., & Hu, R. B. (2020). Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Applied Soil Ecology, 155, 103674. https://doi.org/10.1016/j.apsoil.2020.103674
- Hofman, J., Trávníčková, E., & Anděl, P. (2012). Road salts effects on soil chemical and microbial properties at grassland and forest site in protected natural areas. Plant Soil Environment, 58(6), 282–288. https://doi.org/10.17221/5994-PSE
- Huang, J., Zhu, C. Q., Kong, Y., Cao, X. C., Zhu, L. F., Zhang, Y. C., Ning, Y. W., Tian, W. H., Zhang, H., Yu, Y. J., & Zhang, J. H. (2022). Biochar application alleviated rice salt stress via modifying soil properties and regulating soil bacterial abundance and community structure. Agronomy, 12(2), 409. https://doi.org/10.3390/agronomy12020409
- Jiao, S., Chen, W. M., Wang, J. L., Du, N. N., Li, Q. P., & Wei, G. H. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6(1), 146. https://doi.org/10.1186/s40168-018-0526-0
- Jindo, K., Sanchez-Monedero, M. A., Hernandez, T., Garcia, C., Furukawa, T., Matsumoto, K., Sonoki, T., & Bastida, F. (2012). Biochar influences the microbial community structure during manure composting with agricultural wastes. Science of the Total Environment, 416, 476–481. https://doi.org/10.1016/j.scitotenv.2011.12.009
- Keeney, D. R., & Nelson, D. W. (1982). Nitrogen-inorganic forms. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis part 2: Chemical and microbiological properties ( 2nd ed., pp. 643–698). American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.2ed.c33
- Koralage, I. S. A., Weerasinghe, P., Silva, N. R. N., & De Silva, C. S. (2015). The determination of available phosphorus in soil: A quick and simple method. OUSL Journal, 8, 1–17. https://doi.org/10.4038/ouslj.v8i0.7315
10.4038/ouslj.v8i0.7315 Google Scholar
- Kuai, J., Liu, Z. W., Wang, Y. H., Meng, Y. L., Chen, B. L., Zhao, W. Q., Zhou, Z. G., & Oosterhuis, D. M. (2014). Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight. Plant Science, 223, 79–98. https://doi.org/10.1016/j.plantsci.2014.03.010
- Kuzyakov, Y., Bogomolova, I., & Glaser, B. (2014). Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biology and Biochemistry, 70, 229–236. https://doi.org/10.1016/j.soilbio.2013.12.021
- Larsbrink, J., & McKee, L. S. (2020). Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility. Advances in Applied Microbiology, 110, 63–98. https://doi.org/10.1016/bs.aambs.2019.11.001
- Lashari, M. S., Liu, Y. M., Li, L. Q., Pan, W. N., Fu, J. Y., Pan, G. X., Zheng, J. F., Zheng, X. H., & Yu, X. Y. (2013). Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China great plain. Field Crops Research, 144, 113–118. https://doi.org/10.1016/j.fcr.2012.11.015
- Lashari, M. S., Ye, Y. X., Ji, H. S., Li, L. Q., Kibue, G. W., Lu, H. F., Zheng, J. F., & Pan, G. X. (2015). Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from Central China: A 2-year field experiment. Journal of the Science of Food and Agriculture, 95(6), 1321–1327. https://doi.org/10.1002/jsfa.6825
- Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management, Scienceand technology (Vol. 2009, pp. 1–12). Earthscan.
- Li, H. Y., Xia, Y. Y., Zhang, G. L., Zheng, G. P., Fan, M. Y., & Zhao, H. C. (2022). Effects of straw and straw-derived biochar on bacterial diversity in soda saline-alkaline paddy soil. Annals of Microbiology, 72(1), 15. https://doi.org/10.1186/s13213-022-01673-9
- Li, S. L., Liang, C. T., & Shangguan, Z. P. (2017). Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N. Science of the Total Environment, 607–608, 109–119. https://doi.org/10.1016/j.scitotenv.2017.06.275
- Li, S. L., Wang, S., Fan, M. C., Wu, Y., & Shangguan, Z. P. (2020). Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community. Soil and Tillage Research, 196, 104437. https://doi.org/10.1016/j.still.2019.104437
- Li, X. N., Wang, T., Chang, S. X., Jiang, X., & Song, Y. (2020). Biochar increases soil microbial biomass but has variable effects on microbial diversity: A meta-analysis. Science of the Total Environment, 749, 141593. https://doi.org/10.1016/j.scitotenv.2020.141593
- Li, Y., Wang, L., Zhang, W., Wang, H., Fu, X., & Le, Y. (2011). The variability of soil microbial community composition of different types of tidal wetland in Chongming Dongtan and its effect on soil microbial respiration. Ecological Engineering, 37(9), 1276–1282. https://doi.org/10.1016/j.ecoleng.2011.03.024
- Li, Y. Y., Huang, L. H., Zhang, H., Wang, M. M., & Liang, Z. W. (2017). Assessment of ammonia volatilization losses and nitrogen utilization during the rice growing season in alkaline salt-affected soils. Sustainability, 9(1), 132. https://doi.org/10.3390/su9010132
- Litalien, A., & Zeeb, B. (2020). Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Science of the Total Environment, 698, 134235. https://doi.org/10.1016/j.scitotenv.2019.134235
- Liu, S. N., Meng, J., Jiang, L. L., Yang, X., Lan, Y., Cheng, X. Y., & Chen, W. F. (2017). Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Applied Soil Ecology, 116, 12–22. https://doi.org/10.1016/j.apsoil.2017.03.020
- Liu, X. H., & Zhang, X. C. (2012). Effect of biochar on pH of alkaline soils in the loess plateau: Results from incubation experiments. International Journal of Agriculture and Biology, 14(5), 745–750.
- Lv, M., Wang, Y., Chen, X., Qin, W., Shi, W., Song, W., Chen, J., & Xu, C. (2022). The moderate substitution of Astragalus sinicus returning for chemical fertilizer improves the N cycle function of key ecological bacterial clusters in soil. Frontiers in Microbiology, 13, 1067939. https://doi.org/10.3389/fmicb.2022.1067939
- Marcińczyk, M., & Oleszczuk, P. (2022). Biochar and engineered biochar as slow- and controlled-release fertilizers. Journal of Cleaner Production, 339, 130685. https://doi.org/10.1016/j.jclepro.2022.130685
- Martin, S. M., Kookana, R. S., Van Zwieten, L., & Krull, E. (2012). Marked changes in herbicide sorption-desorption upon ageing of biochars in soil. Journal of Hazardous Materials, 231–232, 70–78. https://doi.org/10.1016/j.jhazmat.2012.06.040
- Maucieri, C., Zhang, Y., McDaniel, M. D., Borin, M., & Adams, M. A. (2017). Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting. Geoderma, 307, 267–276. https://doi.org/10.1016/j.geoderma.2017.07.028
- Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. The Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
- Nelson, D. W., & Sommer, L. E. (1982). Total carbon, organic carbon and organic matter. Methods of soil analysis, part 2. In Chemical and microbiological properties ( 2nd ed., pp. 579–595). ASA-SSSA. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
- Nguyen, T. T. N., Wallace, H. M., Xu, C. Y., Van Zwieten, L., Weng, Z. H., Xu, Z., Che, R., Tahmasbian, I., Hu, H. W., & Bai, S. H. (2018). The effects of short term, long term and reapplication of biochar on soil bacteria. Science of the Total Environment, 636, 142–151. https://doi.org/10.1016/j.scitotenv.2018.04.278
- Nguyen, T. T. N., Xu, C. Y., Tahmasbian, I., Che, R., Xu, Z., Zhou, X., Wallace, M., & Bai, S. H. (2017). Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma, 288, 79–96. https://doi.org/10.1016/j.geoderma.2016.11.004
- O'Neill, B., Grossman, J., Tsai, M. T., Gomes, J. E., Lehmann, J., Peterson, J., Neves, E., & Thies, J. E. (2009). Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microbial Ecology, 58(1), 23–35. https://doi.org/10.1007/s00248-009-9515-y
- Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth, 5(1), 65–75. https://doi.org/10.5194/se-5-65-2014
- Pecher, W. T., Al Madadha, M. E., DasSarma, P., Ekulona, F., Schott, E. J., Crowe, K., Gut, B. S., & DasSarma, S. (2019). Effects of road salt on microbial communities: Halophiles as biomarkers of road salt pollution. PLoS ONE, 14(9), e0221355. https://doi.org/10.1371/journal.pone.0221355
- Prasad, P. N. S., Kavitha, P., Chari, M. S., & Reddy, M. S. (2016). Comparison of extraction methods to assess potassium availability for rice growing soils of canal ayacut of Kurnool district. An Asian Journal of Soil Science, 11(1), 67–73. https://doi.org/10.15740/has/ajss/11.1/67-73
10.15740/HAS/AJSS/11.1/67-73 Google Scholar
- Qiu, H. S., Liu, J. Y., Boorboori, M. R., Li, D., Chen, S., Ma, X., Cheng, P., & Zhang, H. Y. (2022). Effect of biochar application rate on changes in soil labile organic carbon fractions and the association between bacterial community assembly and carbon metabolism with time. Science of the Total Environment, 855, 158876. https://doi.org/10.1016/j.scitotenv.2022.158876
- Rath, K. M., Maheshwari, A., Bengtson, P., & Rousk, J. (2016). Comparative toxicities of salts on microbial processes in soil. Applied and Environmental Microbiology, 82(7), 2012–2020. https://doi.org/10.1128/AEM.04052-15
- Ren, H., Huang, B. L., Fernandez-Garcia, V., Miesel, J., Yan, L., & Lv, C. Q. (2020). Biochar and rhizobacteria amendments improve several soil properties and bacterial diversity. Microorganisms, 8(4), 502. https://doi.org/10.3390/microorganisms8040502
- Ren, X. H., Sun, H. W., Wang, F., Zhang, P., & Zhu, H. K. (2018). Effect of aging in field soil on biochar's properties and its sorption capacity. Environmental Pollution, 242, 1880–1886. https://doi.org/10.1016/j.envpol.2018.07.078
- Sial, T. A., Shaheen, S. M., Lan, Z., Korai, P. K., Ghani, M. I., Khan, M. N., Syed, A. U., Ali, M. N. H. A., Rajpar, I., Memon, M., Bhatti, S. M., Abdelrahman, H., Ali, E. F., Rinklebe, J., & Zhang, J. G. (2022). Addition of walnut shells biochar to alkaline arable soil caused contradictory effects on CO2 and N2O emissions, nutrients availability, and enzymes activity. Chemosphere, 293, 133476. https://doi.org/10.1016/j.chemosphere.2021.133476
- Šimanský, V., & Klimaj, A. (2017). How does biochar and biochar with nitrogen fertilization influence soil reaction? Journal of Ecological Engineering, 18(5), 50–54. https://doi.org/10.12911/22998993/74948
10.12911/22998993/74948 Google Scholar
- Skariah, S., Abdul-Majid, S., Hay, A. G., Acharya, A., Kano, N., Al-Ishaq, R., de Figueiredo, P., Han, A., Guzman, A., Dargham, S. R., Sameer, S., Kim, G. E., Khan, S., Pillai, P., & Sultan, A. A. (2023). Soil properties correlate with microbial community structure in Qatari arid soils. Microbiology Spectrum, 11(2), e0346222. https://doi.org/10.1128/spectrum.03462-22
- Soothar, M. K., Hamani, A. K. M., Sardar, M. F., Sootahar, M. K., Fu, Y. Y., Rahim, R., Bhatti, S. M., Abubakar, S. A., Gao, Y., & Sun, J. S. (2021). Maize (Zea mays L.) seedlings rhizosphere microbial community as responded to acidic biochar amendment under saline conditions. Frontiers in Microbiology, 12, 789235. https://doi.org/10.3389/fmicb.2021.789235
- Steinhauser, K., Müssig, C., Büssis, D., & Usadel, B. (2008). Correlation networks. In B. H. Junker & F. Schreiber (Eds.), Analysis of biological networks (p. 305). John Wiley & Sons, Inc. https://doi.org/10.1002/9780470253489.ch13
10.1002/9780470253489.ch13 Google Scholar
- Sun, R. X., You, X. W., Cheng, Y. D., Gan, D. P., Suo, F. Y., Wang, B., & Li, Y. Q. (2022). Response of microbial compositions and interactions to biochar amendment in the peanut-planted soil of the Yellow River Delta, China. Frontiers in Environmental Science, 10, 924358. https://doi.org/10.3389/fenvs.2022.924358
- Tian, G. L., Qiu, H. S., Wang, Y. T., Zhou, X. G., & Li, D. W. (2022). Short-term legacy effects of rice season irrigation and fertilization on the soil bacterial community of the subsequent wheat season in a rice-wheat rotation system. Agricultural Water Management, 263, 107446. https://doi.org/10.1016/j.agwat.2021.107446
- Tian, X. F., Li, C. L., Zhang, M., Wan, Y. S., Xie, Z. H., Chen, B. C., & Li, W. Q. (2018). Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield. PLoS ONE, 13(1), e0189924. https://doi.org/10.1371/journal.pone.0189924
- Town, J. R., Gregorich, E. G., Drury, C. F., Lemke, R., Phillips, L. A., & Helgason, B. L. (2022). Diverse crop rotations influence the bacterial and fungal communities in root, rhizosphere and soil and impact soil microbial processes. Applied Soil Ecology, 169, 104241. https://doi.org/10.1016/j.apsoil.2021.104241
- United Nations Department of Economic and Social Affairs, Population Division. (2022). World population prospects 2022: Summary of results.
- Wang, C., Liu, S. Y., Zhang, Y., Liu, B. Y., He, F., Xu, D., Zhou, Q. H., & Wu, Z. B. (2018). Bacterial communities and their predicted functions explain the sediment nitrogen changes along with submerged macrophyte restoration. Microbial Ecology, 76(3), 625–636. https://doi.org/10.1007/s00248-018-1166-4
- Wang, X. B., Song, D., Liang, G. Q., Zhang, Q., Ai, C., & Zhou, W. (2015). Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Applied Soil Ecology, 96, 265–272. https://doi.org/10.1016/j.apsoil.2015.08.018
- Wu, L. P., Zheng, H. N., & Wang, X. J. (2021). Effects of soil amendments on fractions and stability of soil organic matter in saline-alkaline paddy. Journal of Environmental Management, 294, 112993. https://doi.org/10.1016/j.jenvman.2021.112993
- Wu, Q. F., Lian, R. Y., Bai, M. X., Bao, J. P., Liu, Y., Li, S. H., Liang, C. F., Qin, H., Chen, J. H., & Xu, Q. F. (2021). Biochar co-application mitigated the stimulation of organic amendments on soil respiration by decreasing microbial activities in an infertile soil. Biology and Fertility of Soils, 57(6), 793–807. https://doi.org/10.1007/s00374-021-01574-0
- Xiao, L., Yuan, G. D., Feng, L. R., Shah, G. M., & Wei, J. (2022). Biochar to reduce fertilizer use and soil salinity for crop production in the Yellow River Delta. Journal of Soil Science and Plant Nutrition, 22(2), 1478–1489. https://doi.org/10.1007/s42729-021-00747-y
- Xu, G., Zhang, Y., Sun, J. N., & Shao, H. B. (2016). Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Science of the Total Environment, 568, 910–915. https://doi.org/10.1016/j.scitotenv.2016.06.079
- Xu, N., Tan, G. C., Wang, H. Y., & Gai, X. P. (2016). Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology, 74, 1–8. https://doi.org/10.1016/j.ejsobi.2016.02.004
- Yao, T. X., Zhang, W. T., Gulaqa, A., Cui, Y. F., Zhou, Y. M., Weng, W. N., Wang, X., Liu, Q. T., & Jin, F. (2021). Effects of peanut shell biochar on soil nutrients, soil enzyme activity, and rice yield in heavily saline-sodic paddy field. Journal of Soil Science and Plant Nutrition, 21(1), 655–664. https://doi.org/10.1007/s42729-020-00390-z
- Yu, L., Bai, J. H., Huang, L. B., Zhang, G. L., Wang, W., Wang, X., & Yu, Z. B. (2022). Carbon-rich substrates altered microbial communities with indication of carbon metabolism functional shifting in a degraded salt marsh of the Yellow River Delta, China. Journal of Cleaner Production, 331, 129898. https://doi.org/10.1016/j.jclepro.2021.129898
- Zhang, G., Zheng, C. Y., Wang, Y., Li, Y. F., & Xin, Y. (2015). Soil organic carbon and microbial community structure exhibit different responses to three land use types in the North China plain. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 65(4), 341–349. https://doi.org/10.1080/09064710.2015.1011223
- Zhang, H. J., Wang, S. J., Zhang, J. X., Tian, C. J., & Luo, S. S. (2021). Biochar application enhances microbial interactions in mega-aggregates of farmland black soil. Soil and Tillage Research, 213, 105145. https://doi.org/10.1016/j.still.2021.105145
- Zhang, W. W., Wang, C., Xue, R., & Wang, L. J. (2019). Effects of salinity on the soil microbial community and soil fertility. Journal of Integrative Agriculture, 18(6), 1360–1368. https://doi.org/10.1016/s2095-3119(18)62077-5
- Zheng, H., Wang, X., Chen, L., Wang, Z. Y., Xia, Y., Zhang, Y. P., Wang, H. F., Luo, X. X., & Xing, B. S. (2018). Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation. Plant, Cell and Environment, 41(3), 517–532. https://doi.org/10.1111/pce.12944
- Zheng, J. F., Chen, J. H., Pan, G. X., Liu, X. Y., Zhang, X. H., Li, L. Q., Bian, R. J., Cheng, K., & Zheng, J. W. (2016). Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from Southwest China. Science of the Total Environment, 571, 206–217. https://doi.org/10.1016/j.scitotenv.2016.07.135
- Zhu, J. J., Niu, W. Q., Zhang, Z. H., Siddique, K. H. M., Dan, S., & Yang, R. Y. (2022). Distinct roles for soil bacterial and fungal communities associated with the availability of carbon and phosphorus under aerated drip irrigation. Agricultural Water Management, 274, 107925. https://doi.org/10.1016/j.agwat.2022.107925